• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Responses of zooplankton community structure and ecosystem function to the invasion of an invertebrate predator, Bythotrephes longimanus

Strecker, Angela Lee 20 July 2007 (has links)
Freshwater ecosystems face unprecedented levels of human-induced stresses and it is expected that the invasion of non-indigenous species will cause the greatest loss of biodiversity in lakes and rivers worldwide. Bythotrephes longimanus is a predatory invertebrate that invaded North America in the early 1980s, first being detected in the Great Lakes, and then moving to a number of inland lakes in Ontario and the northern United States. Using experimental and survey-based approaches, I tested several hypotheses concerning the effects of Bythotrephes on native zooplankton community structure and function. My results indicate that Bythotrephes reduces total abundance, biomass, and richness of zooplankton, especially cladoceran taxa, throughout the ice-free season. As a result of high predation pressure by the invader, total seasonal and epilimnetic zooplankton production was also substantially reduced in invaded lakes, which may have important consequences for the transfer of energy to fish and other taxa that feed on zooplankton. Interestingly, there was some evidence that zooplankton shifted their reproduction in time and space to avoid Bythotrephes, which may buffer the effects of the invader on food web functioning. Other measures of ecosystem function were relatively unaffected by the invasion of Bythotrephes. In addition, Bythotrephes may interact in unexpected ways with other anthropogenic stressors, and act to slow down the process of recovery by preying on species that maintain community abundance during acidification, but also affecting species attempting to recolonize historically acidified lakes. Although dispersal of zooplankton may maintain some of the ecosystem functions provided by zooplankton communities, loss of biodiversity may be a permanent result of invasion. The effects of the continued spread of invasive species across the landscape may be profound, as the invader Bythotrephes has demonstrably altered zooplankton communities and may reduce the ability of freshwater ecosystems to respond to future environmental change and maintain ecosystem functioning. / Thesis (Ph.D, Biology) -- Queen's University, 2007-07-19 14:56:57.102

Page generated in 0.1404 seconds