• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hochschild Cohomology and Complex Reflection Groups

Foster-Greenwood, Briana A. 08 1900 (has links)
A concrete description of Hochschild cohomology is the first step toward exploring associative deformations of algebras. In this dissertation, deformation theory, geometry, combinatorics, invariant theory, representation theory, and homological algebra merge in an investigation of Hochschild cohomology of skew group algebras arising from complex reflection groups. Given a linear action of a finite group on a finite dimensional vector space, the skew group algebra under consideration is the semi-direct product of the group with a polynomial ring on the vector space. Each representation of a group defines a different skew group algebra, which may have its own interesting deformations. In this work, we explicitly describe all graded Hecke algebras arising as deformations of the skew group algebra of any finite group acting by the regular representation. We then focus on rank two exceptional complex reflection groups acting by any irreducible representation. We consider in-depth the reflection representation and a nonfaithful rotation representation. Alongside our study of cohomology for the rotation representation, we develop techniques valid for arbitrary finite groups acting by a representation with a central kernel. Additionally, we consider combinatorial questions about reflection length and codimension orderings on complex reflection groups. We give algorithms using character theory to compute reflection length, atoms, and poset relations. Using a mixture of theory, explicit examples, and calculations using the software GAP, we show that Coxeter groups and the infinite family G(m,1,n) are the only irreducible complex reflection groups for which the reflection length and codimension orders coincide. We describe the atoms in the codimension order for the groups G(m,p,n). For arbitrary finite groups, we show that the codimension atoms are contained in the support of every generating set for cohomology, thus yielding information about the degrees of generators for cohomology.
2

On the cohomology of joins of operator algebras

Husain, Ali-Amir 30 September 2004 (has links)
The algebra of matrices M with entries in an abelian von Neumann algebra is a C*-module. C*-modules were originally defined and studied by Kaplansky and we outline the foundations of the theory and particular properties of M. Furthermore, we prove a structure theorem for ultraweakly closed submodules of M, using techniques from the theory of type I finite von Neumann algebras. By analogy with the classical join in topology, the join for operator algebras A and B acting on Hilbert spaces H and K, respectively, was defined by Gilfeather and Smith. Assuming that K is finite dimensional, Gilfeather and Smith calculated the Hochschild cohomology groups of the join. We assume that M is the algebra of matrices with entries in a maximal abelian von Neumann algebra U, A is an operator algebra acting on a Hilbert space K, and B is an ultraweakly closed subalgebra of M containing U. In this new context, we redefine the join, generalize the calculations of Gilfeather and Smith, and calculate the cohomology groups of the join.
3

The A-infinity Algebra of a Curve and the J-invariant

Fisette, Robert, Fisette, Robert January 2012 (has links)
We choose a generator G of the derived category of coherent sheaves on a smooth curve X of genus g which corresponds to a choice of g distinguished points P1, . . . , Pg on X. We compute the Hochschild cohomology of the algebra B = Ext (G,G) in certain internal degrees relevant to extending the associative algebra structure on B to an A1-structure, which demonstrates that A1-structures on B are finitely determined for curves of arbitrary genus. When the curve is taken over C and g = 1, we amend an explicit A1-structure on B computed by Polishchuk so that the higher products m6 and m8 become Hochschild cocycles. We use the cohomology classes of m6 and m8 to recover the j-invariant of the curve. When g 2, we use Massey products in Db(X) to show that in the A1-structure on B, m3 is homotopic to 0 if and only if X is hyperelliptic and P1, . . . , Pg are chosen to be Weierstrass points. iv
4

Relative Hochschild (co)homology

Lindell, Jonathan January 2022 (has links)
We study relative homological algebra and relative Hochschild cohomology. We dualise the construction in [Cib+21b] for a ring extension B ⊆ A to construct a long nearly exact sequence for the relative Hochschild cohomology HH∗(A|B), the Hochschild cohomology HH∗(A) and the Hochschild cohomology HH∗(B,A). Parallel to this we also study corings and the associated Cartier cohomology and Hochschild cohomology. Given an A-coring C and its right algebra R we have induced maps ExtiA(M, N) → ExtiR(R⊗A M, R⊗A N) by the induction functor. We characterise the vanishing of the Hochschild cohomology of the coring in terms of these induced maps being isomorphisms for degrees greater than or equal to one.
5

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Amaya, Ana Melisa Paiba 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
6

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Ana Melisa Paiba Amaya 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
7

Estruturas de Poisson não comutativas / Noncommutative Poisson structures.

Orseli, Marcos Alexandre Laudelino 27 February 2019 (has links)
Introduzimos o conceito de estrutura de Poisson não comutativa em álgebras associativas e mostra como este conceito se relaciona com o caso clássico, quando a álgebra em questão é a álgebra de funções em uma variedade de Poisson. Mostramos como quocientes simpléticos, não necessariamente suaves, fornecem exemplos de estruturas de Poisson não comutativas. / We introduce the concept of noncommutative Poisson structure on associative algebras and shows how this concept is related to the classical case, that is, the algebra under study is the algebra of functions on a Poisson manifold. We also show how symplectic quotients, not necessarily smooth, provides examples of noncommutative Poisson structures.
8

Deformations of Quantum Symmetric Algebras Extended by Groups

Shakalli Tang, Jeanette 2012 May 1900 (has links)
The study of deformations of an algebra has been a topic of interest for quite some time, since it allows us to not only produce new algebras but also better understand the original algebra. Given an algebra, finding all its deformations is, if at all possible, quite a challenging problem. For this reason, several specializations of this question have been proposed. For instance, some authors concentrate their efforts in the study of deformations of an algebra arising from an action of a Hopf algebra. The purpose of this dissertation is to discuss a general construction of a deformation of a smash product algebra coming from an action of a particular Hopf algebra. This Hopf algebra is generated by skew-primitive and group-like elements, and depends on a complex parameter. The smash product algebra is defined on the quantum symmetric algebra of a nite-dimensional vector space and a group. In particular, an application of this result has enabled us to find a deformation of such a smash product algebra which is, to the best of our knowledge, the first known example of a deformation in which the new relations in the deformed algebra involve elements of the original vector space. Finally, using Hochschild cohomology, we show that these deformations are nontrivial.
9

Hochschild Cohomology of Finite Cyclic Groups Acting on Polynomial Rings

Lawson, Colin M. 05 1900 (has links)
The Hochschild cohomology of an associative algebra records information about the deformations of that algebra, and hence the first step toward understanding its deformations is an examination of the Hochschild cohomology. In this dissertation, we use techniques from homological algebra, invariant theory, and combinatorics to analyze the Hochschild cohomology of skew group algebras arising from finite cyclic groups acting on polynomial rings over fields of arbitrary characteristic. These algebras are the natural semidirect product of the group ring with the polynomial ring. Many families of algebras arise as deformations of skew group algebras, such as symplectic reflection algebras and rational Cherednik algebras. We give an explicit description of the Hochschild cohomology governing graded deformations of skew group algebras for cyclic groups acting on polynomial rings. For skew group algebras, a description of the Hochschild cohomology is known in the nonmodular setting (i.e., when the characteristic of the field and the order of the group are coprime). However, in the modular setting (i.e., when the characteristic of the field divides the order of the group), much less is known, as techniques commonly used in the nonmodular setting are not available.
10

Secondary Hochschild and Cyclic (Co)homologies

Laubacher, Jacob C. 24 March 2017 (has links)
No description available.

Page generated in 0.4322 seconds