• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of design details on stress concentrations in welded rectangular hollow section connections

Daneshvar, Sara 17 March 2021 (has links)
For fatigue design of welded hollow structural sections connections, the “hot spot stress method” in CIDECT Design Guide 8 is widely used. This method forms the basis of various national and international design standards. This thesis sought to address some contemporary design issues where the existing approaches cannot be directly applied. Modified design approaches were proposed for various practical design details. For galvanizing of welded tubular steel trusses, sufficiently large holes to allow for quick filling, venting and drainage must be specified. These holes, quite often specified at the hot spot stress locations, will inevitably affect connection fatigue behaviour. In Chapter 1, six rectangular hollow section (RHS) connections were tested under branch axial loading. The stress concentration factors (SCFs) obtained from the experimental investigation were compared with those calculated using the formulae in CIDECT Design Guide 8. It was shown that the predictions based on the current formulae were unsafe. Hence, finite element (FE) models were developed and validated by comparison with the experimental data. A subsequent parametric study was conducted, including 192 FE models with different hole locations and non-dimensional parameters [branch-to-chord width (β), branch-to-chord thickness (τ), and chord slenderness (2γ) ratios]. SCF formulae for RHS connections with vent/drain holes at different locations were established based on the experimental and FE data. In Chapter 2, by modifying the 192 parametric models in Chapter 1, FE analysis was performed to examine the existing SCF formulae in CIDECT Design Guide 8 for RHS T-connections under branch in-plane bending. The parametric study showed that the existing SCF formulae can lead to unsafe predictions. Critical hot spot stress locations were thus identified. The effects of both branch in-plane bending and chord loading were studied. New design formulae that take the vent and drain holes into account were proposed. The design rules in CIDECT Design Guide 8 assumes sufficient chord continuity on both sides of connection. Therefore, the existing formulae cannot be directly applied to RHS-to-RHS connections situated near a truss/girder end. Chapter 3 sought to develop new approach for calculation of SCFs in such connections. 256 FE models of RHS-to-RHS X-connections, with varied chord end distance-to-width (e/b0) and non-dimensional parameters were modelled and analyzed. The analysis was performed under quasi-static axial compression force(s) applied to the branch(es) and validated by comparison of strain concentration factors (SNCFs) to SNCFs obtained from full-sized connection tests. For all 256 connections, SCFs were determined at five critical hot spots on the side of the connection near the open chord end. The SCFs were found to vary as a function of e/b0, 2γ and β. Existing formulae in CIDECT Design Guide 8 to predict SCFs in directly welded RHS-to-RHS axially loaded X-connections were shown to be conservative when applied to a connection near an open chord end. SCF reduction factors (ψ), and a parametric formula to estimate ψ based on e/b0, 2γ and β, were derived. For RHS-to-RHS connections situated near a truss/girder end, reinforcement using a chord-end cap plate is common; however, for fatigue design, formulae in current design guidelines [for calculation of SCFs] cater to: (i) unreinforced connections, with (ii) sufficient chord continuity beyond the connection on both sides. Chapter 4 sought to develop definitive design guidelines for such connections. The parametric models in Chapter 3 were modified to simulate such connections. Existing SCF formulae in CIDECT Design Guide 8 were shown to be inaccurate if applied to cap plate-reinforced end connections. SCF correction factors (ψ), and parametric formulae to estimate ψ based on e/b0, β, τ and 2γ, were derived. The same methodology was used in Chapter 5 to study the SCFs in square bird-beak (SBB) and diamond bird-beak (DBB) tubular steel X-connections situated at the end of a truss or girder. A comprehensive parametric study, including 256 SBB and 256 DBB connection models, covering wide ranges of chord end distance-to-width (e/b0) and non-dimensional parameters, was performed. Two sets of correction factor (ψ) formulae for consideration of the chord end distance effect were derived, for SBB and DBB X-connections, respectively. / Graduate
2

Automação e integração CAD/CAE no projeto de estruturas metalicas, utilizando perfis tubulares / Automation and integration CAD/CAE on the design of steel structures, using hollow sections

Souza, Mauricio Guilherme Quilez 28 August 2006 (has links)
Orientador: João Alberto Venegas Requena / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-09T16:24:16Z (GMT). No. of bitstreams: 1 Souza_MauricioGuilhermeQuilez_M.pdf: 5444391 bytes, checksum: f64376df9364d46cfcb18e6ba06eff3a (MD5) Previous issue date: 2006 / Resumo: Este trabalho tem como objetivo o desenvolvimento de códigos de computador que têm a finalidade de automatizar as etapas principais de um projeto de estruturas metálicas através das linguagens AutoLISP e Delphi5. Os projetos de estruturas metálicas em estudo são os de coberturas com treliças planas constituídas de barras com perfis tubulares laminados sem costuras e seus contraventamentos. Estes perfis tubulares, ainda pouco utilizados em estruturas planas no Brasil, vêm sendo disseminados através do uso de programas que ajudam os engenheiros a utilizá-los adequadamente em seus projetos tendo em vista que resultam em estruturas mais leves e de fácil fabricação. Desta forma, houve a necessidade de desenvolver um sistema CAD/CAE, para automatizar a geração das geometrias das estruturas planas, além das representações gráficas do sistema geral tridimensional de contraventamentos da estrutura - CAD; exportar os dados para um programa integrado que realiza um processo otimizado de toda a análise estrutural e dimensionamento - CAE e, finalmente, retornar os dados processados para o ambiente CAD, para realizar o detalhamento automático das ligações da estrutura treliçada analisada. Todos os procedimentos adotados para automação dos projetos seguem recomendações de normas técnicas brasileiras principalmente a NBR8800/1986 / Abstract: This work has as objective to show a software that have the goal to automate the main stages of a steel structural design, using AutoLISP and Delphi5 languages. The steel structural designs in case are the roofs formed by plane trusses made by hollow sections frames. These hollow steel sections, which are not highly used in plane structures in Brazil, are being disseminated by the use of softwares that help civil engineers to use them correctly in their designs, in view of that they result in less weighted and easy manufactured structures. So, there is the necessity to develop a CAD/CAE system, that will automate the generation of the geometries from plane structures and the graphical designs from the three-dimentional general system - CAD; also, we have the necessity to export the data to an integrated computer program that executes an optimized process from the entire structural analysis and design - CAE; and, finaly, to return the proceeded data back to CAD environment, to draw the automatic details from the connections of the analyzed structure. All the procedures and methods used to automate the design follows the specifications of Brazilian Design Codes, mainly the NBR-8800/1986 / Mestrado / Estruturas / Mestre em Engenharia Civil

Page generated in 0.0885 seconds