Spelling suggestions: "subject:"follow zeolite"" "subject:"hollow zeolite""
1 |
Hollow Beta zeolites : synthesis and impact of the hollow morphology on diffusion and catalysis / Encapsulation de nanoparticules en cristaux creux de zéolithe BetaMorgado Prates, Ana Rita 18 September 2019 (has links)
De par leur morphologie, les cristaux creux de zéolithe permettent d’étudier les phénomènes de limitations diffusionnelles en catalyse et également d’encapsuler des particules métalliques ; les nano-réacteurs ainsi obtenus ont montré des activités catalytiques originales. Leur synthèse, qui nécessite des caractéristiques structurales particulières, a longtemps été limitée aux zéolithes de structure MFI. Le but de cette thèse était d’étudier différentes voies de synthèse pour préparer des cristaux creux de zéolithe Beta, une des zéolithes les plus utilisées dans l’industrie. Deux voies ont été suivies : l’utilisation d’un zincosilicate de même structure que la zéolithe Beta comme gabarit sacrificiel et une méthode plus classique de désilication sélective. L’encapsulation de nanoparticules de platine dans les cristaux obtenus selon la première voie a été confirmée par l’hydrogénation d’aromatiques substitués. L’’influence de la morphologie sur la diffusion de différentes molécules a été étudiée par ZLC : le temps caractéristique de diffusion a été réduit de 30 à 83 % par rapport à des cristaux conventionnels. Malgré cela, la présence d’une cavité dans les cristaux de zéolithe Beta n’a pas d’effets sur l’activité catalytique dans les réactions d’hydro-isomérisation du nC16 et du craquage du cyclohexane. La thèse discute de la présence/absence de limitations diffusionnelles / Hollow zeolite single crystals have received particular interest in catalysis. The presence of a large cavity in these model zeolites enables the study of diffusional limitation in Catalysis. The cavity also enables the encapsulation of metal nanoparticles. However, their synthesis requires specific structural characteristics and it has been limited for long to zeolites with the MFI structure. The objective of this PhD work was to investigate the synthesis of hollow Beta zeolites (*BEA framework type) and study the impact of the hollow morphology on molecular diffusion and catalysis. Two different strategies have been envisaged: a dissolution/recrystallization approach using CIT-6, a zincosilicate with the same *BEA topology and a selective desilication route. Pt nanoparticles encapsulated in hollow crystals obtained from CIT-6 showed remarkable size-selectivity in the hydrogenation of aromatics. The effect of the hollow morphology in molecular diffusion was studied using the ZLC technique; the characteristic diffusion time of the hollow morphology was reduced by 30-83% compared to the corresponding bulk zeolite. Despite that, the hollow structure had no influence on the catalytic activities for the hydroisomerization of n-C16 and for the cracking of cyclohexane. The presence/absence of diffusional limitation is discussed
|
2 |
Metal nanoparticles encapsulated in membrane-like zeolite single crystals : application to selective catalysis / Nanoparticules métalliques encapsulées dans des nanoboites zéolithiques : applications à des réactions de catalyse sélectiveLi, Shiwen 05 May 2015 (has links)
Les matériaux « coeur-coquille » composés d’une nanoparticule métallique encapsulée à l'intérieur de coquilles inorganiques (oxydes, carbone …) attirent de plus en plus l'attention par leurs propriétés particulières, en particulier dans le domaine de la catalyse. Les particules métalliques sont protégées par la coquille, qui empêche entre autres le frittage et la croissance des particules à haute température. Cependant, les coquilles sont généralement méso à macroporeuses et elles ne peuvent pas jouer le rôle de tamis moléculaire pour les molécules de taille nanométrique. En revanche, les zéolithes sont des solides cristallins microporeux dont les pores bien définis permettent une forte discrimination des réactifs basée sur la taille, la forme ou leur coefficient de diffusion. L’objectif de cette thèse visait à la synthèse de catalyseurs de type coeur-coquille dans lesquels la coquille est une zéolite microporeuse de structure MFI (silicalite-1 et ZSM-5), le coeur étant soit une particule de métal noble (Au, Ag, Pt, Pd), soit des alliages de ces différents métaux, soit enfin un métal de transition (Co, Ni, Cu). Ces catalyseurs ont été appliqués dans des réactions d'hydrogénation sélective (aromatiques substitués) et l'oxydation sélective de CO en présence d'hydrocarbures. Nous avons ainsi montré que la coquille zéolithique, tout en protégeant les particules du frittage, modifie la sélectivité des réactions en interdisant aux réactifs volumineux d’atteindre les sites catalytiques / Nanostructured yolk-shell materials, which consist of metal nanoparticle cores encapsulated inside hollow shells, attract more and more attention in material science and catalyst applications during the last two decades. Metal particles are usually highly mono-dispersed in size and isolated from each other by the shell, which prevents growth by sintering at high temperature. Because they are generally made of meso/macroporous oxides or amorphous carbon, shells cannot carry out molecular sieve-type separation of molecules at the nanometric scale. The aim of the present thesis was to synthesize yolk-shell catalyst with microporous zeolite shells (silicalite-1 and ZSM-5), containing noble (Au, Pt, Pd) transition (Co, Ni, Cu) and alloy metal nanoparticles. Zeolites are crystalline microporous solids with well-defined pores capable of discriminating nanometric reactants on the basis of size, shape and diffusion rate. Zeolite-based yolk-shell catalysts have been applied in selective hydrogenation (toluene and mesitylene) and oxidation (CO) reactions in the presence of hydrocarbons. Zeolite shells not only plaid a key role as membranes, thus changing selectivities as compared to conventional supported catalysts, but they also protected metal nanoparticles from sintering under reaction conditions
|
Page generated in 0.0544 seconds