Spelling suggestions: "subject:"hollowcore slabs"" "subject:"hollowcores slabs""
1 |
Composite action using hollow core slabsNethercot, D.A., Lam, Dennis, Elliott, K.S. January 1999 (has links)
No
|
2 |
Recent Research and Development in Semi-Rigid Composite Joints with Precast Hollowcore SlabsLam, Dennis January 2008 (has links)
No / Composite structure incorporating steel beams and precast hollowcore slabs is a recently developed composite floor system for building structures. This form of composite construction is so far limited to simple beam-column connections. Although the concept of semi-rigid composite joints has been widely research in the past, most of the researches have been carried out on composite joints with metal deck flooring and solid concrete slabs. Research on composite joints with precast hollowcore slabs is rather limited. As the construction industry demands for rapid construction with reduction in cost and environmental impacts, this form of composite floor system, which does not require major onsite concreting, has become very popular among the designers and engineers in the UK. In this paper, full-scale tests of beam-to-column semi-rigid composite joints with steel beam and precast hollowcore slabs are reported. Based on the tests data; the structural behaviour of these semi-rigid composite joints is discussed together with numerical and finite element modelling. Through parametric studies, an analytical model for the semirigid composite joints is proposed and is verified by both the experimental data and finite element model; and good agreement is obtained.
|
3 |
Effects of Transverse Reinforcement on Composite Steel Beams with Precast Hoow Core SlabsLam, Dennis, Nip, T.F. January 2002 (has links)
No / In composite steel beams with precast hollow core slabs, the amount of transverse reinforcement can have a significant effect on the shear and slip capacity of the mechanical shear connectors. The issue of connector ductility becomes especially important when partial shear connection is adopted, as premature failure of the shear connectors would lead to sudden failure of the composite beam. This chapter presents its findings on the effect of transverse reinforcement on connector ductility and proposes design equations. Transverse reinforcement is used to provide ties for the slabs and confined concrete from splitting. The ductility of the shear connector, that is, slip capacity is directly affected by the amount of transverse reinforcement. Design equations presented in this chapter for estimating the shear capacity of the headed shear stud show a good correlation with the push-off test results. For full shear connection design, pre-splitting shear capacity of the headed stud can be used for the composite design, while for partial shear connection design, post-splitting shear capacity of the headed stud should be used. In general, a minimum transverse reinforcement of T16 bars should be used if partial shear connection design is used to ensure a minimum ductility of 6mm slip.
|
4 |
Effects of end condition of hollow core slabs on longitudinal shear capacity of composite beamsNip, T.F., Lam, Dennis January 2001 (has links)
No
|
5 |
Finite element modelling of semi-rigid composite joints with precast hollowcore slabsLam, Dennis, Fu, F., Ye, J. January 2006 (has links)
No / This paper described the finite element modelling of the semi-rigid composite beam-column joints with the composite steel beams and precast hollowcore slabs which can accurately simulate the moment-rotation response of the connections. Using the general purpose finite element software ABAQUS, a three dimensional model of the composite joint is set up. The techniques of simulating the bolt force, the endplate, the concrete elements, the reinforcement, the shear connectors and the interaction between the slabs and the steel beams are discussed. The results are presented and compared with the experimental data and good agreement is obtained. Parametric studies using the developed model will be performed to gain better understanding of this form of composite joints.
|
6 |
Experimental Study of Long Span Composite Beams with Precast Hollow-Core SlabsMurad, A., Lam, Dennis January 2005 (has links)
No
|
7 |
Parametric study of semi-rigid composite joint with precast hollowcore slabsLam, Dennis, Ye, J., Fu, F. January 2007 (has links)
No
|
8 |
Behaviour of composite steel beams with precast hollow core slabs in hogging moment regionsLam, Dennis, Fu, F. January 2005 (has links)
No / The chapter discusses the behavior of composite steel beams with precast hollow core slabs in hogging moment regions. Full-scale composite beams to column semi-rigid connections with precast hollow core slabs are tested in the chapter. The chapter presents a steelwork connection consists of a flush end plate bolted to column flanges. The main variables studied are shear stud's spacing and degree of shear connection. Comprehensive instrumentations are used for all the tests, based on the experimental data, and equations to predict the rotation and the moment capacity for this type of composite connection are proposed in the chapter. A precast composite hollow core floor is a newly developed composite system for building that use precast hollow core slabs as the structural flooring. However, research on composite construction incorporating steel beams with precast hollow core slabs is still relatively new in comparison to the more traditional composite metal deck flooring.
|
9 |
Analytical model of semi-rigid composite joints with steel beams and precast hollowcore slabsLam, Dennis, Ye, J., Fu, F. January 2007 (has links)
No / Composite construction incorporating steel beams and precast hollowcore slabs is a recently developed composite floor system for building construction. As the construction industry demands for rapid construction with reduction in cost and environmental impacts, this form of composite construction, which does not require major onsite concreting, has become very popular among the designers and engineers in the UK. This form of composite construction is so far limited to simple beam-column connections. A semi-rigid composite joint is developed which can provide sufficient moment and rotation capacity required for plastic analysis in composite beams design. An analytical model for the semi-rigid composite connection is proposed and is verified with the experimental data and good agreement is obtained.
|
10 |
Composite Steel Beams with Precast Hollow Core Slabs: Behaviour and DesignLam, Dennis January 2002 (has links)
This article reviews the design and behaviour of composite beams with precast hollow core slabs in multi-storey buildings for gravity loading. A brief history of composite construction and introduction to precast¿composite construction is given, followed by an overview of recent research work on various factors affecting the design. This includes the push-off test procedure, the load¿slip characteristic of the headed shear studs and the design procedures for this type of construction. Finite element modelling of the headed stud shear connectors and the composite beams with precast hollow core slabs are presented. Finally, recommendations and future research work is also suggested.
|
Page generated in 0.0349 seconds