• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of holomorphic correspondences / Dinâmica de correspondências holomorfas

Lima, Carlos Alberto Siqueira 22 June 2015 (has links)
We generalize the notions of structural stability and hyperbolicity for the family of (multivalued) complex maps Hc(z) = zr + c; where r > 1 is rational and zr = exp r log z: We discovered that Hc is structurally stable at every hyperbolic parameter satisfying the escaping condition. Surprisingly, there may be infinitely many attracting periodic points for Hc. The set of such points gives rise to the dual Julia set, which is a Cantor set coming from a Conformal Iterated Funcion System. Both the Julia set and its dual are projections of holomorphic motions of dynamical systems (single valued maps) defined on compact subsets of Banach spaces, denoted by Xc and Wc, respectively. For c close to zero: (1) we show that Jc is a union of quasiconformal arcs around the unit circle; (2) the set Xc is an holomorphic motion of the solenoid X0; (3) using the formalism of Gibbs states we exhibit an upper bound for the Hausdorff dimension of Jc; which implies that Jc has zero Lebesgue measure. / Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família de correspondências holomorfas Hc(z) = zr + c; onde r > 1 é racional e zr = exp r log z: Descobrimos que Hc é estruturalmente estável em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um Conformal Iterated Function System. Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomorfos de sistemas definidos em subconjuntos compactos denotados por Xc e Wc; respectivamente de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequentemente, Jc possui medida de Lebesgue nula.
2

Dynamics of holomorphic correspondences / Dinâmica de correspondências holomorfas

Carlos Alberto Siqueira Lima 22 June 2015 (has links)
We generalize the notions of structural stability and hyperbolicity for the family of (multivalued) complex maps Hc(z) = zr + c; where r > 1 is rational and zr = exp r log z: We discovered that Hc is structurally stable at every hyperbolic parameter satisfying the escaping condition. Surprisingly, there may be infinitely many attracting periodic points for Hc. The set of such points gives rise to the dual Julia set, which is a Cantor set coming from a Conformal Iterated Funcion System. Both the Julia set and its dual are projections of holomorphic motions of dynamical systems (single valued maps) defined on compact subsets of Banach spaces, denoted by Xc and Wc, respectively. For c close to zero: (1) we show that Jc is a union of quasiconformal arcs around the unit circle; (2) the set Xc is an holomorphic motion of the solenoid X0; (3) using the formalism of Gibbs states we exhibit an upper bound for the Hausdorff dimension of Jc; which implies that Jc has zero Lebesgue measure. / Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família de correspondências holomorfas Hc(z) = zr + c; onde r > 1 é racional e zr = exp r log z: Descobrimos que Hc é estruturalmente estável em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um Conformal Iterated Function System. Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomorfos de sistemas definidos em subconjuntos compactos denotados por Xc e Wc; respectivamente de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequentemente, Jc possui medida de Lebesgue nula.

Page generated in 0.0786 seconds