Spelling suggestions: "subject:"homéostasie duu NADPH"" "subject:"homéostasie dud NADPH""
1 |
Etude de la réponse de Saccharomyces cerevisiae à une perturbation NADPH par une approche de biologie des systèmes / Study of the response to NADPH perturbation by a systems biology approach in Saccharomyces cerevisiaeCelton, Magalie 21 October 2011 (has links)
L'élucidation des propriétés du réseau métabolique est fondamentale pour la compréhension du fonctionnement cellulaire et pour l'élaboration de stratégies d'ingénierie métabolique. L'objectif de cette thèse était de mieux comprendre la régulation du métabolisme du NADPH, un métabolite "hub" qui joue un rôle central dans de nombreux processus cellulaires, chez Saccharomyces cerevisiae en fermentation. Nous avons utilisé une démarche systématique couplant modélisation et approches multi-“omics” pour étudier de façon quantitative la réponse à une perturbation de la demande en NADPH. Un système expérimental original, basé sur l'expression d'une butanediol déshydrogénase modifiée NADPH-dépendante a été utilisé pour augmenter de façon contrôlée la demande en NADPH. L'utilisation de ce dispositif, le développement et l'utilisation d'un modèle stœchiométrique de la levure dédié à la fermentation ont permis de prédire la répartition des flux pour différents niveaux de perturbation. Ces analyses ont montré, en premier lieu, la très grande capacité de la levure à faire face à des demandes très importantes de NADPH représentant jusqu'à 40 fois la demande anabolique. Pour des demandes modérées (allant jusqu'à 20 fois la demande anabolique), la perturbation est principalement compensée par une augmentation du flux à travers la voie des pentoses phosphate (VPP) et à moindre titre à travers la voie acétate (Ald6p). Pour une forte demande en NADPH, correspondant à 40 fois la demande anabolique, le modèle prédit la saturation de la VPP ainsi que la mise en place du cycle glycérol-DHA, qui permet l'échange du NADH en NADPH. Des analyses fluxomique (13C), métabolomique et transcriptomique, ont permis de valider ces hypothèses et de les compléter. Nous avons mis en évidence différents niveaux de régulation selon l'intensité de la perturbation : pour les demandes modérées, les flux sont réajustés par un contrôle au niveau enzymatique ; pour de fortes demandes, un contrôle transcriptionnel de plusieurs gènes de la VPP ainsi que de certains gènes des voies de biosynthèse des acides aminés est observé, cet effet résultant probablement de la moindre disponibilité en NADPH. Dans l'ensemble, ce travail a apporté un nouvel éclairage sur les mécanismes impliqués dans l'homéostasie du NADPH et plus généralement dans l'équilibre redox intracellulaire. / The elucidation of the properties of metabolic network is essential to increase our understanding of cellular function and to design metabolic engineering strategies. The objective of this thesis was to better understand the regulation of the metabolism of NADPH, a “hub” metabolite which plays a central role in many cellular processes in Saccharomyces cerevisiae during fermentation. We used a systematic approach combining modeling and multi-“omics” analyses to study quantitatively the response to a perturbation of the NADPH demand. An original experimental system, based on the expression of a modified NADPH-dependent butanediol dehydrogenase was used to increase the demand for NADPH in a controlled manner. Through the use of this device and the development and use of a stoichiometric model of yeast dedicated to the fermentation, we predicted the flux distribution for different levels of perturbation. These experiments showed, first, the overwhelming ability of yeast to cope with very high NADPH demand, up to 40 times the anabolic demand. For a moderate level (up to 20 times the anabolic demand), the perturbation is mainly compensated by increased flux through the pentose phosphate pathway (PPP) and to a lesser extent through the acetate pathway (Ald6p). For a high NADPH demand, corresponding to 40 times the anabolic demand, the model predicts the saturation of the PPP as well as the operation of the glycerol-DHA cycle, which allows the exchange of NADH to NADPH. Fluxomics (13C), metabolomics and transcriptomics data were used to validate and to complement these hypotheses. We showed different levels of control depending on the intensity of the perturbation: for moderate demands, flux remodeling is mainly achieved by enzymatic control; for a high demand, a transcriptional control is observed for several genes of the PPP as well as some genes of the amino acids biosynthetic pathways, this latter effect being likely due to the low NADPH availability. Overall, this work has shed new light on the mechanisms governing NADPH homeostasis and more generally the intracellular redox balance.
|
Page generated in 0.0599 seconds