• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VALIDATION OF DETACHED EDDY SIMULATION USING LESTOOL FOR HOMOGENEOUS TURBULENCE

Doddi, Sai Kumar 01 January 2004 (has links)
Detached Eddy Simulation (DES) is a hybrid turbulence model, a modification to the one-equation model proposed by Spalart and Allmaras (1997) [26]. It combines the advantages of both the RANS and LES models to predict any fluid flow. Presently, the focus is on using Homogeneous Turbulence to test the DES model. In an attempt to scrutinize this model, many cases are considered involving the variance of DES grid spacing parameter, CDES, the grid density, Reynolds number and cases with different initial conditions. Choosing Homogeneous Turbulence for our study alienates complications related to the geometry, boundary conditions and other flow characteristics helping us in studying the behavior of the model thoroughly. Also, the interdependencies of the model grid spacing parameter, grid density and the numerical scheme used are also investigated. Many previous implementations of the DES model have taken the value of CDES=0.65. Through this work, many issues including the sensitivity of CDES will be made clear. The code used in running the test cases is called LESTool, developed at University of Kentucky, Lexington. The two main test cases considered are based on the benchmark experimental study by Comte Bellot and Corrsin (1971) [12] and the Direct Numerical Scheme (DNS) simulation by Blaisdell et al. (1991) [10].
2

Large Eddy Simulation of Shear-Free Interaction of Homogeneous Turbulence with a Flat-Plate Cascade

Salem Said, Abdel-Halim Saber 07 August 2007 (has links)
Studying the effects of free stream turbulence on noise, vibration, and heat transfer on structures is very important in engineering applications. The problem of the interaction of large scale turbulence with a flat-plate cascade is a model of important problems in propulsion systems. Addressing the problem of large scale turbulence interacting with a flat plate cascade requires flow simulation over a large number of plates (6-12 plates) in order to be able to represent numerically integral length scales on the order of blade-to-blade spacing. Having such a large number of solid surfaces in the simulation requires very large computational grid points to resolve the boundary layers on the plates, and that is not possible with the current computing resources. In this thesis we develop a computational technique to predict the distortion of homogeneous isotropic turbulence as it passes through a cascade of thin flat plates. We use Large-Eddy Simulation (LES) to capture the spatial development of the incident turbulence and its interaction with the plates which are assumed to be inviscid walls. The LES is conducted for a linear cascade composed of six plates. Because suppression of the normal component of velocity is the main mechanism of distortion, we neglect the presence of mean shear in the boundary layers and wakes, and allow slip velocity on the plate surfaces. We enforce the zero normal velocity condition on the plates. This boundary condition treatment is motivated by rapid distortion theory (RDT) in which viscous effects are neglected, however, the present LES approach accounts for nonlinear and turbulence diffusion effects by a sub-grid scale model. We refer to this type of turbulence-blade interaction as shear-free interaction. To validate our calculations, we computed the unsteady loading and radiated acoustic pressure field from flat plates interacting with vortical structures. We consider two fundamental problems: (1) A linear cascade of flat plates excited by a vortical wave (gust) given by a 2D Fourier mode, and (2) The parallel interaction of a finite-core vortex with a single plate. We solve the nonlinear Euler equations by a high-order finite-differece method. We use nonreflecting boundary conditions at the inflow and outflow boundaries. For the gust problem, we found that the cascade response depends sensitively on the frequency of the convicted gust. The unsteady surface pressure distribution and radiated pressure field agree very well with predictions of the linear theory for the tested range of reduced frequency. We have also investigated the effects of the incident gust frequency on the undesirable wave reflection at the inflow and outflow boundaries. For the vortex-plate interaction problem, we investigate the effects of the internal structure of the vortex on the strength and directivity of radiated sound. Then we solved the turbulence cascade interaction problem. The normal Reynolds stresses and velocity spectra are analyzed ahead, within, and downstream of the cascade. Good agreement with predictions of rapid distortion theory in the region of its validity is obtained. Also, the normal Reynolds stress profiles are found to be in qualitative agreement with available experimental data. As such, this dissertation presents a viable computational alternative to rapid distortion theory (RDT) for the prediction of noise radiation due to the interaction of free stream turbulence with structures. / Ph. D.
3

Particles and Bubbles Collisions Frequency in Homogeneous Turbulence and Applications to Minerals Flotation Machines

Fayed, Hassan El-Hady Hassan 20 January 2014 (has links)
The collisions frequency of dispersed phases (particles, droplets, bubbles) in a turbulent carrier phase is a fundamental quantity that is needed for modeling multiphase flows with applications to chemical processes, minerals flotation, food science, and many other industries. In this dissertation, numerical simulations are performed to determine collisions frequency of bi-dispersed particles (solid particles and bubbles) in homogeneous isotropic turbulence. Both direct numerical simulations (DNS) and Large Eddy simulations (LES) are conducted to determine velocity fluctuations of the carrier phase. The DNS results are used to validate existing theoretical models as well as the LES results. The dissertation also presents a CFD-based flotation model for predicting the pulp recovery rate in froth flotation machines. In the direct numerical simulations work, particles and bubbles suspended in homogeneous isotropic turbulence are tracked and their collisions frequency is determined as a function of particle Stokes number. The effects of the dispersed phases on the carrier phase are neglected. Particles and bubbles of sizes on the order of Kolmogorov length scale are treated as point masses. Equations of motion of dispersed phases are integrated simultaneously with the equations of the carrier phase using the same time stepping scheme. In addition to Stokes drag, the pressure gradient in the carrier phase and added-mass forces are also included. The collision model used here allows overlap of particles and bubbles. Collisions kernel, radial relative velocity, and radial distribution function found by DNS are compared to theoretical models over a range of particle Stokes number. In general, good agreement between DNS and recent theoretical models is obtained for radial relative velocity for both particle-particle and particle-bubble collisions. The DNS results show that around Stokes number of unity particles of the same group undergo expected preferential concentration while particles and bubbles are segregated. The segregation behavior of particles and bubbles leads to a radial distribution function that is less than one. Existing theoretical models do not account for effects of this segregation behavior of particles and bubbles on the radial distribution function. In the large-eddy simulations efforts, the dissertation addresses the importance of the subgrid fluctuations on the collisions frequency and investigates techniques for predicting those fluctuations. The cases studied are of particles-particles and particles-bubbles collisions at Reynolds number Re<sub>λ</sub> = 96. A study is conducted first by neglecting the effects of subgrid velocity fluctuations on particles and bubbles motions. It is found that around Stokes number of unity solid particles of the same group undergo the well known preferential concentration as observed in the DNS. Effects of pressure gradient on the particles are negligible due to their small sizes. Bubbles as a low inertia particles are very sensitive to subgrid velocity and acceleration fields where the effects of pressure gradient in the carrier phase are dominant. However, particle-bubble radial distribution functions from LES are not as low as that from DNS. To account for the effects of subgrid field on the dispersion of particles and bubbles, a new multifractal methodology has been developed to construct a subgrid vorticity field from the resolved vorticity field in frame work of LES. A Poisson's solver is used to obtain the subgrid velocity field from the subgrid vorticity field. Accounting for the subgrid velocity fluctuations (but neglecting pressure gradient) produced minor changes in the radial distribution function for particle-particle and particle-bubble collisions. We conclude from this study that for accurate particle tracking in LES the subgrid velocity fluctuations must be dynamically realizable field (temporally and spatially correlated with the large scale motion). Adding random SGS velocity fluctuations is not enough to capture the correct radial distribution functions of dispersed phases especially for bubbles-particles collisions where the pressure gradient term ( or acceleration Du<sub>f</sub>′/Dt) is responsible for particle-bubble segregation around particle Stokes number near one. A CFD-based model for minerals flotation machines has been developed in this dissertation. The objective of flotation models is to predict the recovery rate of minerals from a flotation cell. The developed model advances the state-of-the-art of pulp recovery rate prediction by incorporating validated theoretical collisions frequency models and detailed hydrodynamics from two-phase flow simulations. Spatial distributions of dissipation rate and air volume fraction are determined by the two-phase hydrodynamic simulations. Knowing these parameters throughout the machine is essential in understanding the effectiveness of different components of flotation machine (rotor, stator or disperser, jets) on the flotation efficiency. The developed model not only predicts the average pulp recovery rate but also it indicates regions of high/low recovery rates. The CFD-based flotation model presented here can be used to determine the dependence of recovery rate constant at any locality within the pulp based on particle diameter, particle specfic gravity, contact angle, and surface tension. / Ph. D.
4

Application de l'assimilation de données à  la mécanique des fluides numérique : de la turbulence isotrope aux écoulements urbains / Application of data assimilation to computational fluid dynamics : from isotropic turbulence to urban flows

Mons, Vincent 18 November 2016 (has links)
Dans cette thèse, l'application de l'assimilation de données (AD) à la MFN est étudiée, avec comme objectif global de contribuer à l'amélioration de la prévision numérique d'écoulements complexes. L'AD consiste à fusionner les outils de prévision numérique avec des données expérimentales afin d'améliorer l'estimation des paramètres d'entrée du code MFN. Les aspects méthodologiques de l'AD et son application pour des études physiques sont tous deux examinés dans cette thèse. Dans un premier temps, l'AD est utilisée pour une étude théorique de la turbulence de grille. Un modèle spectral pour les écoulements turbulents homogènes et anisotropes est également proposé. Plusieurs méthodes d'AD sont ensuite implémentées pour un code MFN et appliquées à la reconstruction d'écoulements instationnaires et compressibles en présence d'incertitudes sur des paramètres d'entrée de grandes dimensions afin d'évaluer les forces et faiblesses respectives de ces techniques. Des stratégies pour le placement optimal de réseaux de capteurs sont élaborées afin d'améliorer les performances du processus d'AD. Enfin, l'AD est appliquée à l'identification de sources de polluants et à la reconstruction de conditions météorologiques pour des écoulements en milieu urbain prédits par Simulation des Grandes Echelles. / In this thesis, we investigate the use of various data assimilation (DA) techniques in the context of CFD, with the ultimate goal of enhancing the prediction of real-world flows. DA consists in merging numerical predictions and experimental observations in order to improve the estimation of the CFD solver inputs. Both methodological aspects of DA and its potential application to physics investigations are explored for various flow configurations. First, DA is considered for the theoretical analysis of grid turbulence decay. Fundamental aspects of anisotropic homogeneous turbulence are also investigated through spectral modelling. Various DA methodologies are deployed in conjunction with a Navier-Stokes solver and are assessed for the reconstruction of unsteady compressible flows with large control vectors. Sensor placement strategies are developed to enhance the performances of the DA process. Finally, a first application of DA to Large Eddy Simulations of full-scale urban flows is proposed with the aim of identifying source and wind parameters from concentration measurements.
5

Etude de la structure des flammes diphasiques dans les brûleurs aéronautiques / Analysis of two-phase-flow flame structure in aeronautical burners

Hannebique, Grégory 09 April 2013 (has links)
La régulation des polluants a mené à la création de nouveaux systèmes de combustion. Le carburant étant stocké sous forme liquide, sa transformation jusqu’à sa combustion est complexe. La capacité de la Simulation aux grandes échelles à simuler des écoulements turbulents réactifs a été montrée sur des cas académiques comme sur des configurations industrielles, tout en prenant en compte les phénomènes multiphysiques intervenant dans ces configurations, mais les études sur la structure de flamme diphasique sont encore trop peu nombreuses. La présence de deux solveurs pour la simulation d’une phase liquide étant disponible dans le code AVBP, leur utilisation permet une comparaison et une compréhension des phénomènes en jeu combinant dispersion, évaporation, et combustion. La première partie de l’étude relate la validation du modèle d’injection FIM-UR. Ce modèle est capable de reconstruire les profils de vitesses et de granulométrie à l’injecteur sans avoir à simuler les phénomènes d’atomisation primaire et secondaire. Une validation en régime turbulent avait déjà été réalisée, et on propose ici de valider le modèle dans un cas laminaire. Des comparaisons entre simulations monodisperses et polydisperse et des expériences sont effectuées. La simulation monodisperse Lagrangienne donne une bonne structure globale mais la simulation polydisperse Lagrangienne permet de retrouver le comportement au centre du cône avec la présence des petites gouttes et à la périphérie du cône par la présence des grosses gouttes. De plus, des améliorations sont apportées au modèle pour le formalisme Eulérien et montrent de bons résultats. La partie suivante s’intéresse à caractériser un spray polydisperse par une distribution monodisperse. En effet, au cas où une approche polydisperse n’est pas possible, le choix du diamètre moyen à prendre pour une simulation monodisperse est délicat. On propose donc d’analyser le comportement d’un spray polydisperse en le comparant à ceux de sprays monodisperses. Deux configurations académiques sont choisies : des cas de Turbulence Homogène Isotrope chargée en particules pour étudier la dynamique, et des calculs d’évaporation 0D. Trois paramètres sont étudiés pour la dynamique : la concentration préférentielle (ou ségrégation), la traînée moyenne et la traînée réduite moyenne. Cette dernière et la ségrégation de la distribution polydisperse semblent affectées par les tailles de goutte les plus faibles, et la concentration préférentielle apparait alors comme la moyenne des ségrégations des classes qui la composent pondérées par l’inverse du nombre de Stokes associé à chacune de ces classes. La traînée moyenne de la simulation polydisperse possède un comportement proche des diamètres moyens D10 et D20. Ces analyses nous poussent donc à choisir le D10 pour caractériser la dynamique d’un spray polydisperse. Les calculs d’évaporation 0D ne permettent pas dans un premier temps de caractériser efficacement la masse évaporée d’un spray polydisperse par celle d’un spray monodisperse équivalent, mais la définition de nouveaux diamètres issus de la littérature des lits fluidisés comme le D50% le permet, ce qui le place autour du D32. On propose donc de caractériser l’évaporation d’un spray polydisperse par ce diamètre. Enfin, la dernière partie étudie la structure de flamme diphasique dans la chambre MERCATO, à l’aide du formalisme Lagrangien, monodisperse et polydisperse, mais aussi en utilisant le formalisme Eulérien. La validation du modèle FIM-UR du premier chapitre et ses améliorations sont utilisées pour représenter les conditions d’injection liquide. En plus d’un calcul polydisperse, deux simulations monodisperses Lagrangiennes sont réalisées en prenant les diamètres moyens D10 et D32, suite à la partie précédente. Des comparaisons qualitatives et des validations sont réalisées, en comparant des profils de vitesses gazeuses axiale et fluctuante et vitesse axiale liquide issus de l’expérience. / Regulations on pollutants have led to the creation of new combustion systems. Giving that fuel is stored in a liquid form, its evolution until combustion is complex. The ability of Large Eddy Simulation has been demonstrated on academic cases, as well as on industrial configurations, by taking into account the multi-physics phenomena, but there is a lack of studies about two-phase flow flame structures. Two solvers for the simulation of two-phase flows are available in the AVBP code, hence both simulations are performed to compare and increase understanding of the phenomena involved such as dispersion, evaporation and combustion. The first part of the study focuses on the validation of the FIM-UR injection model. This model is able to build velocity and droplet profiles at the injector, without simulating primary and secondary break up. A validation in a turbulent case has already been done, and this study validates the model in a laminar case. Comparisons between monodisperse and polydisperse simulations, and experiments are performed. The monodisperse Lagrangian simulation shows good results but the polydisperse simulation is able to represent profiles in the center of the cone by small droplets and at the peripheral part of the cone, by big ones. Moreover, improvements in the Eulerian model exhibit good results. The next section tries to evaluate the impact of polydispersion. Indeed, when a polydisperse approach is not available, choosing the mean diameter can be tricky. A comparison between the behavior of polydisperse spray and monodisperse sprays ones is realised. Two academic cases are studied: Homogeneous Isotropic Turbulence with particles to analyze the dynamics, and 0D evaporation cases. For the dynamics, preferential concentration, mean drag and reduced mean drag are studied. The latter and preferential concentration are affected by small droplets, and the preferential concentration of a polydisperse spray is equivalent to the average of preferential concentration of classes, extracted from the polydisperse distribution, weighted by the inverse of the Stokes number of each class. The mean drag behaves like the D10 and D20 mean drags. This analysis allows us to choose the D10 to characterize a polydisperse distribution for the dynamics. Zero-D evaporation simulations cannot characterize the polydisperse spray evaporated mass by the evaporated mass of monodisperses sprays. New definitions of diameters from fluidized bed literature enable the use of D50%, which is close to D32. We propose to use this diameter to characterize the evaporation of a polydisperse spray. Finally, the last section studies the structure of two-phase flames in the MERCATO bench, using the Lagrangian formalism, monodisperse and polydisperse but also using the Eulerian formalism. The validation of FIM-UR model and improvements from the first section are used to represent liquid injection conditions. A polydisperse simulation is realized and two monodisperse simulations are computed using mean diameters D10 and D32, thanks to the previous section. Qualitative comparisons and validations are realized, comparing gaseous velocity profiles and liquid velocity profiles. Good agreements are found and the mean diameter D32 seems to be close to the polydisperse spray. A comparison between mean flames is done with an Abel transform of the flame from the experiments. The flame has an "M shape", anchored by small recirculation zones out of the swirler, and by a point at the tip of the central recirculation zone. Then, the impact of droplet distributions is analyzed. Even if few bigger droplets from the polydisperse distribution are convected in the hot gases due to bigger particular time and evaporation time, two-phase flow flame structures are equivalent. Different combustion regimes appeared with premixed flames and pockets of fuel burning in the hot gases.

Page generated in 0.1269 seconds