• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A phenological and bioclimatic analysis of honey yield in South Africa

Illgner, Peter Mark January 2004 (has links)
This study has investigated the interaction between honeybees and their forage plants and the impact of selected climatic variables on honey production in South Africa. Twenty-seven scale-hive records from 25 localities have been used as a measure of colony honey reserves. At least 944 plant species are visited by honeybees in South Africa for their nectar and/or pollen, with more than half providing both rewards. The entire honeybee flora encompasses 532 genera and 137 families. The flowering phenologies of the different reward categories of the indigenous forage plants are all significantly and positively correlated at the 0.05 level. Similarly, species offering both rewards are significantly and positively correlated with the flowering phenology of the null flora. The same results were obtained for correlations between the different reward categories of the exotic forage plants in South Africa. Of the 30 species pairs which fulfilled the criteria for selection, 23 occurred in sympatry, 5 in allopatry and 2 in possible parapatry. There is evidence for both competition and facilitation within different indigenous species pairs. The lack of geographical correlation in the intra-annual variation in honey stores and the near absence of any statistically significant (p < 0.05) honey related intra-annual intracolonial correlations may indicate that the former is more important than the latter for the determination of the level of honey reserves within a colony. Only one statistically significant correlation was found between either scale-hive record from the University of Pretoria Experimental Farm and any of the selected climatic variables. A one month lag period and/or possible seasonal effects were detected for each variable, with the exception of the duration of sunshine, in the autocorrelation analyses. A possible 12 month seasonal period was also identified in the single series fourier analyses for a number of variables. Similarly, 12 months was also the most frequently recurring period in the crossspectral results for the one scale-hive record (H42). Any activities which have an impact on the landscape have the potential to affect honeybees and/or their forage plants. Honeybee crop or plant pollination may also enhance yields for commercial farmers and facilitate rural food security.
2

Botanical inventory and phenology in relation to foraging behaviour of the Cape honeybees (Apis Mellifera Capensis) at a site in the Eastern Cape, South Africa / The ecology of honey plants in the Eastern Cape

Merti, Admassu Addi January 2003 (has links)
From an apicultural point of view the Cape fynbos is under-utilised and our knowledge of its utilization by the Cape honeybees is incomplete. The key aim of this study was to test the hypothesis that the Cape honeybees utilize the fynbos species as the preferred source of nectar and pollen. Subsidiary aims included distinguishing vegetation communities in the area, identifying pollen and nectar sources, the relationship between brood population and seasonal pollen collection patterns, examining the effect of meteorological factors on pollen collection. The study site was on Rivendell Farm within the Eastern Cape Albany district: an area of high species richness. A checklist of vascular plant species was produced revealing 97 families, 271 genera and 448 species. A classification by two-way indicator species (TWINSPAN) recognized seven vegetation communities: Forest, Bush clumps, Acacia savanna, Grassland, Grassy fynbos, Fynbos and Shrubland. Direct field observations of the foraging of Cape honeybees identified 54 nectar and pollen source plant species. Honeybee pollen loads trapped from four colonies of hives identified 37 pollen source plants of which Metalasia muricata, Eucalyptus grandis, Eucalyptus camaldulensis, Erica chamissonis, Helichrysum odoratissimum, Helichrysum anomalum, Crassula cultrata and Acacia longifolia were the predominant pollen source plants. It was also found that 60% of pollen yield derived from fynbos vegetation. The pollen source plants came from both Cape endemic and from nonendemic species. Thus we reject the hypothesis that Cape honeybees selectively forage fynbos species as a preferred source of pollen and nectar. The examination of the effect of temperature, wind-speed and temperature on pollen collection activity of honeybees revealed that: a temperature range of between 14°C to 26°C was optimal for pollen collection; wind speeds of up to 4m/s were conducive for pollen collection; relative humidity was found to have no significant influence on pollen collection. Pollen collection and brood rearing patterns are positively correlated with flowering intensities, but we found in our Eastern Cape study site that brood rearing was not limited to the spring flowering season but did extend to the end of summer. In order to determine the available nectar yield of common plant species hourly secretion of nectar volumes was measured for 24 hours to determine the variation of available nectar during different times of the day. In all nectar producing species the nectar volume was high in the early morning and declined as the day progressed. We found that the volume of available nectar was affected by prevailing temperature and humidity around the flowers.

Page generated in 0.0854 seconds