• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation of elastic wave propagation in honeycomb core sandwich plates

Tian, Biyu 17 September 2012 (has links) (PDF)
Honeycomb core sandwich panels are widely used in the aeronautic industry due to their excellent flexural stiffness to weight ratio. Generally, classical homogenized model is used to model honeycomb core sandwiches in order to have an efficient but not expensive numerical modeling. However, previous works have shown that, while the homogenized models could correctly represent the membrane waves' behavior of sandwiches in a large frequency range, they could not give satisfying simulation results for the flexural waves' behavior in the high frequency range (HF). In fact, the honeycomb core layer plays an important role in the propagation of the flexural waves, so that when the involved wavelengths become close to the characteristic lengths of honeycomb cells, the cellular microstructure starts interacting strongly with the waves and its effect should no longer be neglected, which is unfortunately not the case of the homogenized models. In the present work, we are interested in improving the theoretical and numerical analysis of HF elastic waves' propagation in honeycomb core sandwich panels by a numerical approach based on the Bloch wave theorem, which allows taking into account the periodic characteristics of the honeycomb core. In fact, by decomposing non-periodic wave solutions into their periodic Bloch wave basis modes, numerical models are defined on a basic cell and solved in a efficient way, and provide a better description and so a better understanding of the interaction between HF wave propagation phenomena and the periodic structures. Our numerical approach is developed and validated in the cases of one-dimensional periodic beam structures, of two-dimensional periodic hexagonal and rectangular beam structures and of honeycomb core sandwich plates. By solving the eigenvalue problem of the Bloch wave modes in one primitive cell of the periodic structure for all the wave vectors located in the corresponding first Brillouin zone in the phase space, the dispersion relation between the wave vector and the eigenvalue is calculated. The analysis of the dispersion relation provides important results such as: the frequency bandgaps and the anisotropic and dispersive characteristics of periodic structures, the comparison between the first Bloch wave modes to those of the classical equivalent homogenized models and the existence of the retro-propagating Bloch wave modes with a negative group velocity.
2

Compression After Impact Experiments and Analysis on Honeycomb Core Sandwich Panels with Thin Facesheets

McQuigg, Thomas Dale 14 July 2011 (has links)
A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on Nomex honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques. These techniques include high speed video photography of compression after impact (CAI) failure, as well as, digital image correlation (DIC) for full-field deformation measurements. The effect of nominal core density on the observed failure mode is described. A finite element model (FEM) is developed to simulate the experiments performed in the current study. The purpose of this simulation is to predict the experimental test results, and to conrm the experimental test conclusions. A newly-developed, commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model gives it the new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model as a result of a large amount of easily available experimental test data. A sensitivity study is used to assess the effect of each damage detail on overall analysis results. Mesh convergence of the new FEM is also discussed. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is accurately predicted in a high-fidelity, physics-based simulation and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities. / Ph. D.
3

Numerical simulation of elastic wave propagation in honeycomb core sandwich plates / Modélisation de la propagation d'ondes élastiques dans des plaques sandwichs en nid d'abeilles

Tian, Biyu 17 September 2012 (has links)
Des panneaux sandwichs en nid d'abeilles sont largement utilisés, notamment dans l’industrie aérospatiale et aéronautique, à cause du très bon rapport entre rigidité en flexion et poids. Concernant leur modélisation, ils sont considérés classiquement comme de milieux homogénéisés équivalents afin d'éviter des modèles numériques prohibitifs en coûts de calculs. Cependant, des travaux précédents ont montré que, si le comportement dynamique en membrane des sandwichs peut être correctement représenté par des modèles homogénéisés classiques dans une large gamme de fréquences, ces mêmes modèles ne permettent malheureusement pas de bien décrire le comportement en flexion dans le domaine de hautes fréquences (HF). En effet, la couche centrale en nid d'abeilles joue un rôle important dans le comportement en flexion du sandwich, il est donc indispensable de la modéliser de manière appropriée. Or, lorsque les longueurs d’onde impliquées deviennent aussi petites que les longueurs caractéristiques des cellules du nid d’abeilles, cette microstructure cellulaire interagit fortement avec les ondes et génère des effets d’interaction non négligeables, qui ne sont malheureusement pas pris en compte par des modèles homogénéisés classiques. Dans le cadre de cette thèse, on s’intéresse donc à l'amélioration de l’analyse théorique et numérique de la propagation d’ondes élastiques HF dans ces panneaux composites. On exploite les caractéristiques périodiques du nid d'abeilles en utilisant sur une approche numérique basée sur la théorie des ondes de Bloch. En effet, en décomposant des solutions non périodiques sur une base composée de modes périodiques de Bloch, il est possible de développer des modèles numériques, qui considèrent des phénomènes de propagation des ondes à l’intérieur d’une seule cellule de base et captent toutes les interactions. Ces modèles numériques sont donc de taille raisonnable, par rapport aux dimensions souvent très importantes des structures industrielles. Des analyses théoriques et des outils de modélisation ont été développés pour des milieux périodiques composés de structures minces : poutres ou plaques. Notre approche a été développée et validée pour des structures périodiques uni- puis bi-dimensionnelles composées de poutres. Pour les cas 2D, la forme de la cellule est hexagonale ou rectangulaire. Nous avons aussi considéré des plaques sandwichs en nid d’abeilles. Pour toutes ces structures, en identifiant les valeurs propres et les modes propres de Bloch sur une cellule primitive pour tous les vecteurs d’onde de Bloch situés dans la première zone de Brillouin dans l’espace de phase, la relation de dispersion entre le vecteur d'onde de Bloch et la valeur propre est calculée. En analysant cette relation de dispersion, les résultats importants sont obtenus, tels que les bandes de fréquences passantes et bloquantes et les caractéristiques d'anisotropie et dispersives des structures périodiques, la comparaison quantitative entre les premiers modes de Bloch et ceux des modèles homogénéisés classiques en vue d’une définition précise du domaine validation en fréquence de ceux-derniers et la mise en évidence des modes de Bloch « rétro-propagatifs » munis d’une vitesse de groupe négative. / Honeycomb core sandwich panels are widely used in the aeronautic industry due to their excellent flexural stiffness to weight ratio. Generally, classical homogenized model is used to model honeycomb core sandwiches in order to have an efficient but not expensive numerical modeling. However, previous works have shown that, while the homogenized models could correctly represent the membrane waves’ behavior of sandwiches in a large frequency range, they could not give satisfying simulation results for the flexural waves’ behavior in the high frequency range (HF). In fact, the honeycomb core layer plays an important role in the propagation of the flexural waves, so that when the involved wavelengths become close to the characteristic lengths of honeycomb cells, the cellular microstructure starts interacting strongly with the waves and its effect should no longer be neglected, which is unfortunately not the case of the homogenized models. In the present work, we are interested in improving the theoretical and numerical analysis of HF elastic waves’ propagation in honeycomb core sandwich panels by a numerical approach based on the Bloch wave theorem, which allows taking into account the periodic characteristics of the honeycomb core. In fact, by decomposing non-periodic wave solutions into their periodic Bloch wave basis modes, numerical models are defined on a basic cell and solved in a efficient way, and provide a better description and so a better understanding of the interaction between HF wave propagation phenomena and the periodic structures. Our numerical approach is developed and validated in the cases of one-dimensional periodic beam structures, of two-dimensional periodic hexagonal and rectangular beam structures and of honeycomb core sandwich plates. By solving the eigenvalue problem of the Bloch wave modes in one primitive cell of the periodic structure for all the wave vectors located in the corresponding first Brillouin zone in the phase space, the dispersion relation between the wave vector and the eigenvalue is calculated. The analysis of the dispersion relation provides important results such as: the frequency bandgaps and the anisotropic and dispersive characteristics of periodic structures, the comparison between the first Bloch wave modes to those of the classical equivalent homogenized models and the existence of the retro-propagating Bloch wave modes with a negative group velocity.

Page generated in 0.0891 seconds