• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prediction of Infrasound Emission from Horizontal Axis Wind Turbines

Dazhuang He (11823935) 18 December 2021 (has links)
Wind energy is one of the fastest-growing renewable energy technologies, and horizontal axis wind turbines (HAWT) have been the most common device to convert wind kinetic energy into electrical energy. As the capacities of wind turbines and scales of wind farm constructions are rapidly increasing over time, environmental impacts of wind energy are becoming more relevant and raising more attention than ever before. One of the major environmental concerns is noise emission from wind energy facilities, especially low-frequency noise and infrasound that allegedly cause so-called wind turbine syndrome. Therefore, a numerical simulation program capable to predict low-frequency noise and infrasound emission from wind turbines is a useful tool to aid future wind energy development. In this study of this thesis, a computer program named TDRIP (Time Domain Rotor Infrasound Prediction) is developed based on acoustic analogy theories. Farassat’s formulation 1A, a solution to Ffowcs Williams-Hawkings (FW-H) equation, is implemented in the TDRIP program to compute aerodynamically generated sound. The advantage of this program is its capability to simultaneously compute infrasound emission of multiple wind turbines in time domain, which is a challenging task for other aerodynamic noise prediction methods. The developed program is validated against results obtained from computational fluid dynamics (CFD) simulations. The program is then used to compute aerodynamic noise emitted from wind turbine rotors. The effects of wind direction, wind turbine siting, and phase of wind turbine rotation on consequent aerodynamic noise are investigated. Results of aerodynamic noise computation imply that wind turbine siting configuration or wind turbine phase adjustment can help reducing noise level at certain locations, which make the program ideal to be integrated into wind farm siting or control tools.
2

Investigating the feasibility and soil-structure integrity of onshore wind turbine systems in Kuwait

Almutairi, Badriya L. January 2017 (has links)
Wind energy technologies are considered to be among the most promising types of renewable energy sources, which have since attracted broad considerations through recent years due to the soaring oil prices and the growing concerns over climate change and energy security. In Kuwait, rapid industrialisation, population growth and increasing water desalination are resulting in high energy demand growth, increasing the concern of oil diminishing as a main source of energy and the climate change caused by CO2 emissions from fossil fuel based energy. These demands and challenges compelled governments to embark on a diversification strategy to meet growing energy demand and support continued economic growth. Kuwait looked for alternative forms of energy by assessing potential renewable energy resources, including wind and sun. Kuwait is attempting to use and invest in renewable energy due to the fluctuating price of oil, diminishing reserves, the rapid increase in population, the high consumption of electricity and the environment protection. In this research, wind energy will be investigated as an attractive source of energy in Kuwait.
3

Modélisation des systèmes éoliens verticaux intégrés aux bâtiments : modélisation du couple production / Bâtiment / Modeling of vertical axis wind systems integrated into buildings : modeling of coupling between Production / Buildings

Jaohindy, Placide 20 August 2012 (has links)
La technique d'intégration des systèmes éoliens verticaux (VAWT) au service des logements individuels, collectifs et tertiaires est une approche intéressante pour les acteurs de la maitrise d'énergie pour promouvoir une utilisation rationnelle de l'énergie. Le choix de l'implantation d'une éolienne en milieu urbain est déterminé par la hauteur des bâtiments, la vitesse du vent et l'intensité de turbulence du site. Les conditions de vents sévères à faible altitude sont favorables à une implantation de VAWT. Dans certaines villes, la hauteur moyenne des bâtiments est relativement faible et ceci fait qu'en ces lieux, les VAWTs sont appréciables par rapport aux HAWTs. La mécanique des fluides numériques (CFD) est mise en œuvre pour modéliser les écoulements d'air au travers d'éoliennes et des bâtiments. Un problème CFD modélisé avec un modèle de turbulence approprié donneront des résultats de simulations qui s'approcheront des réalités physiques et des résultats de l'expérimentation. Dans cette étude, les modèles standard k-" et SST k-! ont été utilisés. Après analyse des possibilités d'intégration d'une VAWT, la toiture reste la zone d'intégration la plus intéressante. En plus de l'étude aérodynamique, nous avons entamé une modélisation électrique de la chaîne de conversion de l'éolienne en utilisant le logiciel Matlab/Simulink. Le travail a été effectué dans le but de déterminer la puissance électrique susceptible d'être produite par l'éolienne. Pour finaliser cette étude, un modèle de couplage électrique de VAWTs avec un bâtiment considéré comme un modèle de charge est présenté. / The building integration of the vertical axis wind turbine (VAWT) to supply the individual, collective and tertiary residences consumption is an interesting approach that can help architects and the actors of the energy control to promote a rational use of renewable energy in the in homes. The choice of the location of the urban wind turbine type is determined by building height, wind speed and turbulence intensity of the site. The severe conditions of wind at low altitude are favorable for a VAWT installation. In some cities, the average buildings height is low, in these places, the VAWTs must be appreciable compared to the HAWTs. The modelling of the air flow through the wind turbine and the couple building-wind turbine involves the computation fluid dynamics (CFD). A problem modeled with a suitable turbulence model will give results that approach the physical reality and the experiment results. In this study, the standard k-" and SST k-! models were used. After analyzing the possibilities of VAWT integration, the roof is the most interesting integration area. In addition to CFD method, we have started to study the electrical model of the VAWT. The work was conducted to determine the electrical power generated by the wind turbine using Matlab/Simulink software. To complete the study, a VAWT model coupled with a building where the building is considered as a consumption model is presented.

Page generated in 0.0908 seconds