• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of dietary lectins on cholecystokinin release and the behaviour of colonic carcinoma cell lines

Jordinson, Mark January 1997 (has links)
No description available.
2

Modulation of noradrenergic inputs to the preoptic area of the rat brain by oestradiol

Conde, Gillian L. January 1994 (has links)
No description available.
3

The Pleiotropic Roles of FGLamide Allatostatins in the African Migratory Locust, Locusta migratoria

Robertson, Lisa 09 August 2013 (has links)
The FGLa/ASTs are one family of allatostatin peptides and share an amidated C-terminal sequence (FGL-amide). The inhibitory effect of FGLa/ASTs on juvenile hormone (JH) biosynthesis in Diploptera punctata led to their discovery, but there is a lack of allatostatic function across most insect species that suggests this function may not be their primary role. Rather, the FGLa/ASTs are implicated as brain/gut peptides, modulating gut physiology. This thesis demonstrates the pleiotropic nature of FGLa/ASTs in Locusta migratoria and emphasizes the role of FGLa/ASTs as brain/gut peptides involved in homeostatic processes. FGLa/AST-like immunoreactivity (FLI) is associated with the corpus cardiacum (CC) and corpus allatum (CA). FGLa/ASTs increase adipokinetic hormone release from the CC and alter JH biosynthesis from the CA, suggesting roles in energy utilization and in growth and metamorphosis. Each region of the gut exhibits FLI. The gut is dually innervated: neurons in the abdominal ganglia of the central nervous system (CNS) innervate the posterior gut and some contain FLI, while neurons within the stomatogastric nervous system (STNS) that innervate the anterior gut do not seem to contain FLI, indicating that source of FLI on the gut are cells within the CNS, which may release FGLa/ASTs at the gut to alter aspects of gut physiology. FGLa/ASTs are involved in peristalsis, neural control of foregut contractions, and ileal K+ transport. In particular, FGLa/ASTs inhibit contractions of each gut region and also modulate the rhythmic motor output of a central pattern generator within the ventricular ganglion of the STNS. FGLa/ASTs also inhibit ileal K+ efflux, suggesting a diuretic action and implicating FGLa/ASTs in fluid and ion homeostasis. This work provides a comprehensive picture of how FGLa/ASTs play an integral role in nutrient processing, energy mobilization, and growth and metamorphosis to contribute to the overall maintenance of homeostasis. This reinforces the role of FGLa/ASTs as brain/gut peptides and emphasizes their involvement in the flexibility of nervous communication and integration of the endocrine system with the CNS to achieve homeostasis.
4

The Pleiotropic Roles of FGLamide Allatostatins in the African Migratory Locust, Locusta migratoria

Robertson, Lisa 09 August 2013 (has links)
The FGLa/ASTs are one family of allatostatin peptides and share an amidated C-terminal sequence (FGL-amide). The inhibitory effect of FGLa/ASTs on juvenile hormone (JH) biosynthesis in Diploptera punctata led to their discovery, but there is a lack of allatostatic function across most insect species that suggests this function may not be their primary role. Rather, the FGLa/ASTs are implicated as brain/gut peptides, modulating gut physiology. This thesis demonstrates the pleiotropic nature of FGLa/ASTs in Locusta migratoria and emphasizes the role of FGLa/ASTs as brain/gut peptides involved in homeostatic processes. FGLa/AST-like immunoreactivity (FLI) is associated with the corpus cardiacum (CC) and corpus allatum (CA). FGLa/ASTs increase adipokinetic hormone release from the CC and alter JH biosynthesis from the CA, suggesting roles in energy utilization and in growth and metamorphosis. Each region of the gut exhibits FLI. The gut is dually innervated: neurons in the abdominal ganglia of the central nervous system (CNS) innervate the posterior gut and some contain FLI, while neurons within the stomatogastric nervous system (STNS) that innervate the anterior gut do not seem to contain FLI, indicating that source of FLI on the gut are cells within the CNS, which may release FGLa/ASTs at the gut to alter aspects of gut physiology. FGLa/ASTs are involved in peristalsis, neural control of foregut contractions, and ileal K+ transport. In particular, FGLa/ASTs inhibit contractions of each gut region and also modulate the rhythmic motor output of a central pattern generator within the ventricular ganglion of the STNS. FGLa/ASTs also inhibit ileal K+ efflux, suggesting a diuretic action and implicating FGLa/ASTs in fluid and ion homeostasis. This work provides a comprehensive picture of how FGLa/ASTs play an integral role in nutrient processing, energy mobilization, and growth and metamorphosis to contribute to the overall maintenance of homeostasis. This reinforces the role of FGLa/ASTs as brain/gut peptides and emphasizes their involvement in the flexibility of nervous communication and integration of the endocrine system with the CNS to achieve homeostasis.

Page generated in 0.3101 seconds