Spelling suggestions: "subject:"born clause"" "subject:"corn clause""
1 |
Automated inference of ACSL function contracts using TriCeraAmilon, Jesper January 2021 (has links)
This thesis explores synergies between deductive verification and model checking, by using the existing model checker TriCera to automatically infer specifications for the deductive verifier Frama-C. To accomplish this, a formal semantics is defined for a subset of ANSI C, extended with assume statements, called Csmall. Then, it is shown how a Hoare logic contract can be translated into statements in Csmall, and the defined formal semantics is used to prove that the translation is correct. Furthermore, it is shown that the translation can be applied also to a real specification language. This is done by defining a subset of ACSL, called ACSLsmall, and giving a formal semantics also for this. Lastly, two examples are provided showing that the theory developed in this thesis can be applied to automatically infer ACSL function contracts. / Den här avhandlingen studerar synergier mellan deduktiv verifikation och modelprovning, genom att använda Tricera, ett verktyg för modellprovning, för att automatiskt generera specifikationer för Frama-C, ett verktyg för deduktiv verifikation. Detta uppnås genom att definiera en formell semantik för en delmängd av ANSI-C, utökat med assume satser, som kallas förCsmall. Sedan visas hur kontrakt kan översättas till satser i Csmall samt att översättningen är korrekt. Därefter visas att översättningen också kan tillämpas på ett verkligt specifikationsspråk, genom att definiera en delmängd av ACSL, som kallas ACSLsmall, och definiera en formell semantik också för detta. Slutligen visas med två exempel hur teorin från uppsatsen kan appliceras för att automatiskt generera funktionskontrakt i ACSL.
|
2 |
Experience with Acore: Implementing GHC with ActorsPalmucci, Jeff, Waldsburger, Carl, Duis, David, Krause, Paul 01 August 1990 (has links)
This paper presents a concurrent interpreter for a general-purpose concurrent logic programming language, Guarded Horn Clauses (GHC). Unlike typical implementations of GHC in logic programming languages, the interpreter is implemented in the Actor language Acore. The primary motivation for this work was to probe the strengths and weaknesses of Acore as a platform for developing sophisticated programs. The GHC interpreter provided a rich testbed for exploring Actor programming methodology. The interpreter is a pedagogical investigation of the mapping of GHC constructs onto the Actor model. Since we opted for simplicity over optimization, the interpreter is somewhat inefficient.
|
3 |
An investigation of design and execution alternatives for the committed choice non-deterministic logic languagesTrehan, Rajiv January 1989 (has links)
The general area of developing, applying and studying new and parallel models of computation is motivated by a need to overcome the limits of current Von Neumann based architectures. A key area of research in understanding how new technology can be applied to Al problem solving is through using logic languages. Logic programming languages provide a procedural interpretation for sentences of first order logic, mainly using a class of sentence called Horn clauses. Horn clauses are open to a wide variety of parallel evaluation models, giving possible speed-ups and alternative parallel models of execution. The research in this thesis is concerned with investigating one class of parallel logic language known as Committed Choice Non-Deterministic languages. The investigation considers the inherent parallel behaviour of Al programs implemented in the CCND languages and the effect of various alternatives open to language implementors and designers. This is achieved by considering how various Al programming techniques map to alternative language designs and the behaviour of these Al programs on alternative implementations of these languages. The aim of this work is to investigate how Al programming techniques are affected (qualitatively and quantitatively) by particular language features. The qualitative evaluation is a consideration of how Al programs can be mapped to the various CCND languages. The applications considered are general search algorithms (which focuses on the committed choice nature of the languages); chart parsing (which focuses on the differences between safe and unsafe languages); and meta-level inference (which focuses on the difference between deep and flat languages). The quantitative evaluation considers the inherent parallel behaviour of the resulting programs and the effect of possible implementation alternatives on this inherent behaviour. To carry out this quantitative evaluation we have implemented a system which improves on the current interpreter based evaluation systems. The new system has an improved model of execution and allows several
|
Page generated in 0.0571 seconds