• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beta-cyclodextrin modification and host-guest complexation.

Pham, Duc-Truc January 2008 (has links)
A series of five linked β-cyclodextrin (βCD) dimers N,N-bis(6 [superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-succinamide, 66βCD₂su, N-((2[superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A-deoxy-6 [superscript]A -β-cyclodextrinyl)-urea, 36βCD₂su, N,N-bis((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -deoxy-3 [superscript]A-β-cyclodextrinyl)-succinamide, 33βCD₂su, N,N-bis(6[superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-urea, 66βCD₂ur, and N-((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A -deoxy-6 [superscript]A -β-cyclodextrinyl)urea, 36βCD₂ur, has been prepared. The complexation of 6-(4’-(toluidinyl)naphthalene-2-sulphonate, TNS⁻, by βCD and the five linked βCD dimers was characterized by UV, fluorescence and 2D ¹H ROESY NMR spectroscopy. In aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K, TNS⁻ forms host-guest complexes with βCD of stoichiometry βCD.TNS⁻ (K₁ = 3020 and 3320 dm³ mol⁻¹) and βCD₂.TNS⁻ (K₂ = 57 and 11 dm³ mol⁻¹) where the first and second values were determined in UV and fluorescence studies, respectively. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur, the analogous K₁ = 16100, 10900, 10700, 55100 and 18300 dm³ mol⁻¹ and K₁ = 12500, 8700, 9600, 38000 and 9800 dm³ mol⁻¹(fluorimetric studies), respectively. ¹H 2D ROESY NMR studies provided evidence for variation of the mode of complexation of the TNS⁻ guest as the βCD host is changed. The factors affecting complexation are discussed. UV and ¹H NMR studies showed that 6-(4’-(t-butyl)-phenyl)naphthalene-2-sulphonate, BNS⁻, and its dimer, (BNS⁻)₂, form host-guest complexes with βCD of the stoichiometry βCD.BNS⁻ (K₁ = 5.54 × 10⁴ dm³ mol⁻¹ ) and βCD.BNS₂ ²⁻(K₂ = 3.07 × 10² dm³ mol⁻¹ ) where the complexation constant K₁ = [βCD.BNS⁻]/([βCD][BNS⁻] and K₂ = [βCD.(BNS⁻)₂]/([βCD.BNS⁻][BNS⁻]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur the analogous K₁ = 125, 74, 10.2, 364 and 16.1 (× 10⁴ dm³ mol⁻¹ ) and K₂ = 25.7, 2.30, 2.57, 17.6 and 17.2 (× 10² dm³ mol⁻¹ ), respectively. For the dimerisation of BNS⁻ K[subscript]d = 2.63 × 10² dm³ mol⁻¹ . Fluorimetric studies showed that the complexation stability for βCD.BNS⁻, forms βCD. BNS⁻, 66βCD₂su.BNS⁻, 36βCD₂su.BNS⁻, 33βCD₂su. BNS⁻, 66βCD₂ur.BNS⁻ and 36βCD₂ur. BNS⁻ characterized by K₁ = 4.67, 330, 101, 11.0, 435 and 29.6 (× 10⁴ dm³ mol⁻¹ ), respectively. The factors affecting the variations in these data are discussed. The enantioselectivity of substituted βCDs 6 [superscript]A -[bis (carboxylatomethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDidaH₂) and (2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -[bis(carboxylatomethyl)amino]-3[superscript]A -deoxy-β-cyclodextrin (3βCDidaH₂) and 6 [superscript]A -[tris(carboxylatomethyl)(2- aminoethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDedtaH₃) and their Eu³ ⁺ complexes in forming host-guest complexes with six enantiomeric guests in D₂O was studied by 1D and 2D ¹H NMR (600 MHz) spectroscopy. The guests are D/L-tryptophanate (Trp⁻), 4-hydroxyl-D/L-phenylglycinate (4HOPhg⁻), D/L-histidinate (His⁻), D/L-pheniramine (Phm), D/L-phenylglycinate (Phg⁻) and (D/L)-β-phenylserinate (βPhs⁻). Enantioselective host-guest complexation was observed between the [Eu(6βCDida)]⁺ , [Eu(3βCDida)]⁺ and [Eu(6βCDedta)] complexes and Trp⁻, [Eu(6βCDida)]⁺ and [Eu(3βCDida)]⁺ and 4HOPhg⁻, and βCD, 6βCDida²⁻, 3βCDida²⁻, 6βCDedta³⁻ and the Eu³⁺complexes of the three substituted βCDs and Phm. The His⁻, Phg⁻ and βPhs⁻ enantiomers showed no evidence for selective host-guest complexation. The preparation of 3βCDidaH₂ and 6βCDedtaH₃ and the determination of their pK[subscript]a s are also reported. In collaboration with the research group of Prof. Matthew A. Tarr, (University of New Orleans, USA), the 6βCDida²⁻ and the 6βCDedta³⁻ has been utilized to improve Fenton oxidation of aromatic pollutants. To further support to this work, the binary complexation of Fe² ⁺ by 6βCDida²⁻ has been studied by potentiometric titrations. A series of six modified poly(acrylic acid)s 3% substituted with either βCD or the adamantyl moiety with different length of substituent chain was synthesised. To advance the understanding and control of aqueous supramolecular assembly, the host-guest interactions between the βCD substituted poly(acrylic acid)s and adamantane-1-carboxylic; adamantyl substituted poly(acrylic acid)s with βCD and linked βCD dimers; and between both βCD and adamantyl substituted poly(acrylic acid)s have been studied. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1311237 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2008
2

Beta-cyclodextrin modification and host-guest complexation.

Pham, Duc-Truc January 2008 (has links)
A series of five linked β-cyclodextrin (βCD) dimers N,N-bis(6 [superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-succinamide, 66βCD₂su, N-((2[superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A-deoxy-6 [superscript]A -β-cyclodextrinyl)-urea, 36βCD₂su, N,N-bis((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -deoxy-3 [superscript]A-β-cyclodextrinyl)-succinamide, 33βCD₂su, N,N-bis(6[superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-urea, 66βCD₂ur, and N-((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A -deoxy-6 [superscript]A -β-cyclodextrinyl)urea, 36βCD₂ur, has been prepared. The complexation of 6-(4’-(toluidinyl)naphthalene-2-sulphonate, TNS⁻, by βCD and the five linked βCD dimers was characterized by UV, fluorescence and 2D ¹H ROESY NMR spectroscopy. In aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K, TNS⁻ forms host-guest complexes with βCD of stoichiometry βCD.TNS⁻ (K₁ = 3020 and 3320 dm³ mol⁻¹) and βCD₂.TNS⁻ (K₂ = 57 and 11 dm³ mol⁻¹) where the first and second values were determined in UV and fluorescence studies, respectively. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur, the analogous K₁ = 16100, 10900, 10700, 55100 and 18300 dm³ mol⁻¹ and K₁ = 12500, 8700, 9600, 38000 and 9800 dm³ mol⁻¹(fluorimetric studies), respectively. ¹H 2D ROESY NMR studies provided evidence for variation of the mode of complexation of the TNS⁻ guest as the βCD host is changed. The factors affecting complexation are discussed. UV and ¹H NMR studies showed that 6-(4’-(t-butyl)-phenyl)naphthalene-2-sulphonate, BNS⁻, and its dimer, (BNS⁻)₂, form host-guest complexes with βCD of the stoichiometry βCD.BNS⁻ (K₁ = 5.54 × 10⁴ dm³ mol⁻¹ ) and βCD.BNS₂ ²⁻(K₂ = 3.07 × 10² dm³ mol⁻¹ ) where the complexation constant K₁ = [βCD.BNS⁻]/([βCD][BNS⁻] and K₂ = [βCD.(BNS⁻)₂]/([βCD.BNS⁻][BNS⁻]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur the analogous K₁ = 125, 74, 10.2, 364 and 16.1 (× 10⁴ dm³ mol⁻¹ ) and K₂ = 25.7, 2.30, 2.57, 17.6 and 17.2 (× 10² dm³ mol⁻¹ ), respectively. For the dimerisation of BNS⁻ K[subscript]d = 2.63 × 10² dm³ mol⁻¹ . Fluorimetric studies showed that the complexation stability for βCD.BNS⁻, forms βCD. BNS⁻, 66βCD₂su.BNS⁻, 36βCD₂su.BNS⁻, 33βCD₂su. BNS⁻, 66βCD₂ur.BNS⁻ and 36βCD₂ur. BNS⁻ characterized by K₁ = 4.67, 330, 101, 11.0, 435 and 29.6 (× 10⁴ dm³ mol⁻¹ ), respectively. The factors affecting the variations in these data are discussed. The enantioselectivity of substituted βCDs 6 [superscript]A -[bis (carboxylatomethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDidaH₂) and (2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -[bis(carboxylatomethyl)amino]-3[superscript]A -deoxy-β-cyclodextrin (3βCDidaH₂) and 6 [superscript]A -[tris(carboxylatomethyl)(2- aminoethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDedtaH₃) and their Eu³ ⁺ complexes in forming host-guest complexes with six enantiomeric guests in D₂O was studied by 1D and 2D ¹H NMR (600 MHz) spectroscopy. The guests are D/L-tryptophanate (Trp⁻), 4-hydroxyl-D/L-phenylglycinate (4HOPhg⁻), D/L-histidinate (His⁻), D/L-pheniramine (Phm), D/L-phenylglycinate (Phg⁻) and (D/L)-β-phenylserinate (βPhs⁻). Enantioselective host-guest complexation was observed between the [Eu(6βCDida)]⁺ , [Eu(3βCDida)]⁺ and [Eu(6βCDedta)] complexes and Trp⁻, [Eu(6βCDida)]⁺ and [Eu(3βCDida)]⁺ and 4HOPhg⁻, and βCD, 6βCDida²⁻, 3βCDida²⁻, 6βCDedta³⁻ and the Eu³⁺complexes of the three substituted βCDs and Phm. The His⁻, Phg⁻ and βPhs⁻ enantiomers showed no evidence for selective host-guest complexation. The preparation of 3βCDidaH₂ and 6βCDedtaH₃ and the determination of their pK[subscript]a s are also reported. In collaboration with the research group of Prof. Matthew A. Tarr, (University of New Orleans, USA), the 6βCDida²⁻ and the 6βCDedta³⁻ has been utilized to improve Fenton oxidation of aromatic pollutants. To further support to this work, the binary complexation of Fe² ⁺ by 6βCDida²⁻ has been studied by potentiometric titrations. A series of six modified poly(acrylic acid)s 3% substituted with either βCD or the adamantyl moiety with different length of substituent chain was synthesised. To advance the understanding and control of aqueous supramolecular assembly, the host-guest interactions between the βCD substituted poly(acrylic acid)s and adamantane-1-carboxylic; adamantyl substituted poly(acrylic acid)s with βCD and linked βCD dimers; and between both βCD and adamantyl substituted poly(acrylic acid)s have been studied. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1311237 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2008
3

Beta-cyclodextrin modification and host-guest complexation.

Pham, Duc-Truc January 2008 (has links)
A series of five linked β-cyclodextrin (βCD) dimers N,N-bis(6 [superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-succinamide, 66βCD₂su, N-((2[superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A-deoxy-6 [superscript]A -β-cyclodextrinyl)-urea, 36βCD₂su, N,N-bis((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -deoxy-3 [superscript]A-β-cyclodextrinyl)-succinamide, 33βCD₂su, N,N-bis(6[superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-urea, 66βCD₂ur, and N-((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A -deoxy-6 [superscript]A -β-cyclodextrinyl)urea, 36βCD₂ur, has been prepared. The complexation of 6-(4’-(toluidinyl)naphthalene-2-sulphonate, TNS⁻, by βCD and the five linked βCD dimers was characterized by UV, fluorescence and 2D ¹H ROESY NMR spectroscopy. In aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K, TNS⁻ forms host-guest complexes with βCD of stoichiometry βCD.TNS⁻ (K₁ = 3020 and 3320 dm³ mol⁻¹) and βCD₂.TNS⁻ (K₂ = 57 and 11 dm³ mol⁻¹) where the first and second values were determined in UV and fluorescence studies, respectively. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur, the analogous K₁ = 16100, 10900, 10700, 55100 and 18300 dm³ mol⁻¹ and K₁ = 12500, 8700, 9600, 38000 and 9800 dm³ mol⁻¹(fluorimetric studies), respectively. ¹H 2D ROESY NMR studies provided evidence for variation of the mode of complexation of the TNS⁻ guest as the βCD host is changed. The factors affecting complexation are discussed. UV and ¹H NMR studies showed that 6-(4’-(t-butyl)-phenyl)naphthalene-2-sulphonate, BNS⁻, and its dimer, (BNS⁻)₂, form host-guest complexes with βCD of the stoichiometry βCD.BNS⁻ (K₁ = 5.54 × 10⁴ dm³ mol⁻¹ ) and βCD.BNS₂ ²⁻(K₂ = 3.07 × 10² dm³ mol⁻¹ ) where the complexation constant K₁ = [βCD.BNS⁻]/([βCD][BNS⁻] and K₂ = [βCD.(BNS⁻)₂]/([βCD.BNS⁻][BNS⁻]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur the analogous K₁ = 125, 74, 10.2, 364 and 16.1 (× 10⁴ dm³ mol⁻¹ ) and K₂ = 25.7, 2.30, 2.57, 17.6 and 17.2 (× 10² dm³ mol⁻¹ ), respectively. For the dimerisation of BNS⁻ K[subscript]d = 2.63 × 10² dm³ mol⁻¹ . Fluorimetric studies showed that the complexation stability for βCD.BNS⁻, forms βCD. BNS⁻, 66βCD₂su.BNS⁻, 36βCD₂su.BNS⁻, 33βCD₂su. BNS⁻, 66βCD₂ur.BNS⁻ and 36βCD₂ur. BNS⁻ characterized by K₁ = 4.67, 330, 101, 11.0, 435 and 29.6 (× 10⁴ dm³ mol⁻¹ ), respectively. The factors affecting the variations in these data are discussed. The enantioselectivity of substituted βCDs 6 [superscript]A -[bis (carboxylatomethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDidaH₂) and (2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -[bis(carboxylatomethyl)amino]-3[superscript]A -deoxy-β-cyclodextrin (3βCDidaH₂) and 6 [superscript]A -[tris(carboxylatomethyl)(2- aminoethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDedtaH₃) and their Eu³ ⁺ complexes in forming host-guest complexes with six enantiomeric guests in D₂O was studied by 1D and 2D ¹H NMR (600 MHz) spectroscopy. The guests are D/L-tryptophanate (Trp⁻), 4-hydroxyl-D/L-phenylglycinate (4HOPhg⁻), D/L-histidinate (His⁻), D/L-pheniramine (Phm), D/L-phenylglycinate (Phg⁻) and (D/L)-β-phenylserinate (βPhs⁻). Enantioselective host-guest complexation was observed between the [Eu(6βCDida)]⁺ , [Eu(3βCDida)]⁺ and [Eu(6βCDedta)] complexes and Trp⁻, [Eu(6βCDida)]⁺ and [Eu(3βCDida)]⁺ and 4HOPhg⁻, and βCD, 6βCDida²⁻, 3βCDida²⁻, 6βCDedta³⁻ and the Eu³⁺complexes of the three substituted βCDs and Phm. The His⁻, Phg⁻ and βPhs⁻ enantiomers showed no evidence for selective host-guest complexation. The preparation of 3βCDidaH₂ and 6βCDedtaH₃ and the determination of their pK[subscript]a s are also reported. In collaboration with the research group of Prof. Matthew A. Tarr, (University of New Orleans, USA), the 6βCDida²⁻ and the 6βCDedta³⁻ has been utilized to improve Fenton oxidation of aromatic pollutants. To further support to this work, the binary complexation of Fe² ⁺ by 6βCDida²⁻ has been studied by potentiometric titrations. A series of six modified poly(acrylic acid)s 3% substituted with either βCD or the adamantyl moiety with different length of substituent chain was synthesised. To advance the understanding and control of aqueous supramolecular assembly, the host-guest interactions between the βCD substituted poly(acrylic acid)s and adamantane-1-carboxylic; adamantyl substituted poly(acrylic acid)s with βCD and linked βCD dimers; and between both βCD and adamantyl substituted poly(acrylic acid)s have been studied. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1311237 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2008
4

Synthesis, Characterization and Host-Guest Complexation Studies of Dendritic and Linear Pyridinium Derivatives

Murugavel, Kathiresan 20 December 2010 (has links)
Convergent and divergent strategies for the synthesis of viologen dendrimers with 1,3,5-tri-methylene branching units are presented. The synthesis of 3,5-bis(hydroxymethyl) benzyl bromide was optimized. The analysis of the crystal structure of 1-[3,5-bis(hydroxymethyl)benzyl]-4-(pyridin-4-yl) pyridinium hexafluorophosphate together with PM3 calculations opens an avenue to judge the structure and conformation of benzylic viologen dendrimers. In order to study chemical trigger induced conformational changes, viologen dendrimers were spin-labeled via a divergent approach. 1-(2,4-dinitrophenyl)-4-(pyridin-4-yl)pyridinium hexafluorophosphate was used as the end group to yield an activated dendrimer of the respective generation. The corresponding dendrimers were spin-labeled by reacting the active functionality with 4-amino TEMPO. The products were characterized by ESR (spin-label efficiency) and conventional cyclic voltammetry. Dynamic ESR studies are planned. New trimethylene-dipyridinium dendrimers were synthesized via a divergent approach using 4-tert-butylbenzyl group as the peripheral group. These dendrimers are well soluble in DMF or DMSO as PF6 salts and they act as a host for anthraquinone-2,6-disulfonate (AQDS). They can be stoichiometrically titrated with AQDS as shown by 1H-NMR, DOSY and cyclic voltammetry. Upon loading them with AQDS, the dendrimers undergo first a contraction, they reach a minimum hydrodynamic radius for complete charge compensation and they re-open when overcharging takes place. The contraction is supported by MM+ calculations. Upon stepwise loading of G2 (42 positive charges) with AQDS (2 negative charges), the first 3 molar equivalents (6 neg. charges) occupy the innermost dendrimer shell (consisting of 6 pos. charges), the next 6 equivalents (12 neg. charges) occupy the middle shell (12 pos. charges) and the last 12 equivalents AQDS (24 neg. charges) occupy the outermost shell of the dendrimer (24 pos. charges), as supported by 1H-NMR titrations yielding the magic equivalent numbers of 3, 9=3+6, and 21=3+6+12. Such stepwise radial complexations again in DMSO were further demonstrated using other molecular guests (mono-, di- and trianionic) as well as with on purpose synthesized viologen dendrimers. α,ω-dibromoalkanes were bifunctionalized in two steps to yield alkyl phosphonates with pyridinium, trimethylenedipyridinium, bipyridinium or a sulfonate at their ω end. These compounds were used as surface modifiers to build biomimetic membranes on the pore walls of mesoporous TiO2. Host-guest interaction studies with on purpose synthesized viologen compounds have been performed in collaboration.
5

Biocatalytic Production, Preparation and Characterization of Large-ring Cyclodextrins

Mokhtar, Mohd Noriznan 04 March 2009 (has links) (PDF)
Cyclodextrins (CD) are cyclic oligosaccharides composed of six to more than sixty glucose units. Large-ring cyclodextrins (LR-CD) are novel CD comprised of more than eight glucose units with cavity structures and sizes different from that of commercially available CD<sub>6</sub> – CD<sub>8</sub>. LR-CD may offer unique molecular recognition properties and can be produced biocatalytically from starch using cyclodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) in a short reaction time. LR-CD were isolated from glucose, CD<sub>6</sub> – CD<sub>8</sub> and other compounds by complexation of CD<sub>6</sub> – CD<sub>8</sub> as well as precipitation techniques. The yield of LR-CD (degree of polymerization from 9 to 21) was optimized using central composite design. Addition of polar organic solvents to the synthesis resulted in higher yields of LR-CD. LR-CD composed of 9 to 21 glucose units were successfully separated using reversed-phase of ODS-AQ chromatography and normal-phase of polyamine II chromatography. Maintaining optimized reaction conditions aided in a high yield of CD<sub>9</sub>; it could be separated with reasonable yield using a single step of polyamine II chromatography. A co-grinding method helped to obtain higher solubilization levels of glibenclamide, vitamin A acetate and vitamin D<sub>3</sub> in CD<sub>13</sub>, CD<sub>10</sub> and CD<sub>11</sub>, respectively when compared to other CD. Vitamin K<sub>1</sub> was solubilized in distilled water with CD<sub>6</sub> – CD<sub>13</sub> using a co-precipitation method. When compared with other CD, CD<sub>9</sub> was seen to be the best solubilizer. The analysis of complexes using ESI MS showed spironolactone and glibenclamide complexed with CD<sub>9</sub> and CD<sub>13</sub>, respectively.
6

Design, Synthesis and Self-Assembly of Polymeric Building Blocks and Novel Ionic Liquids, Ionic Liquid-Based Polymers and Their Properties

Lee, Minjae 09 September 2010 (has links)
The convergence of supramolecular and polymer sciences has led to the construction of analogs of traditional covalently-constructed polymeric structures and architectures by supramolecular methods. Host-guest complexations of polymers are also possible through well-defined synthesis of polymeric building blocks, for novel supramolecular polymers. Monotopic polymeric building blocks were synthesized by controlled radical polymerizations with a crown or paraquat initiator. The combinations of terminal and central functionalities of host and guest polymeric building blocks provided chain-extended and tri-armed homopolymers, and diblock and tri-armed copolymers. A supramolecular graft copolymer was formed from a main-chain poly(ester crown ether) and a paraquat terminated polystyrene. This comb-like copolymer was characterized by a large viscosity increase. A four-armed polystyrene-b-poly(n-butyl methacrylate) was synthesized from a pseudorotaxane macroinitiator derived from a complex of a crown-centered polystyrene and a dufunctional paraquat compound. A single peak with higher molecular weight from size exclusion chromatography proved the copolymer formation. Supramolecular interactions enhance the ionic conductivity of semi-crystalline ionic polymers; the ionic conductivity of a C₆-polyviologen and dibenzo-30-crown-10 mixture was 100 times higher than the polyviologen itself. However, ionic conductivities of amorphous polyviologens with polyethers were influenced only by glass transition temperature changes. New imidazolium ionic liquid monomers and imidazolium based polymers were synthesized for potential applications in electroactive devices, such as actuators. Structure-property relationships for pendant imidazolium polyacrylates and main-chain imidazolium polyesters were investigated. Terminal ethyleneoxy moeties enhanced ionic conduction 2~3 times; however, the alkyl chain length effect was negligible. For the imidazoium polyesters, higher ion conductivities result from 1) mono-imidazolium over bis-imidazolium, and 2) bis(trifluoromethanesulfonyl)imide polymers over hexafluorophosphate analogs. A semi-crystalline hexafluorophosphate polyester with C₁₀-sebacate-C₁₀, displayed 400-fold higher ionic conductivity than the amorphous C₆-sebacate-C₆ analogue, suggesting the formation of a biphasic morphology in the former polyester. New dicationic imidazolium salts have interesting features. 1,2-Bis[N-(N'-alkylimidazoilum)]ethane salts stack well in the solid state and possess multiple solid-solid phase transitions. They complex with dibenzo-24-crown-8 and a dibenzo-24-crown-8 based pyridyl cryptand with <i>K<sub>a</sub></i> = ~30 and 360 M¹, respectively. Some of these dicationic imidazolium salts have low entropies of fusion, typical of plastic crystals. These newly discovered imidazolium homopolymers have ionic conductivities up to 10⁴ (S cm⁻¹); however, better properties are still required. Well-designed block copolymers should provide both good electrical and mechanical properties from bicontinuous morphologies, such ion channels. / Ph. D.
7

Biocatalytic Production, Preparation and Characterization of Large-ring Cyclodextrins

Mokhtar, Mohd Noriznan 26 January 2009 (has links)
Cyclodextrins (CD) are cyclic oligosaccharides composed of six to more than sixty glucose units. Large-ring cyclodextrins (LR-CD) are novel CD comprised of more than eight glucose units with cavity structures and sizes different from that of commercially available CD<sub>6</sub> – CD<sub>8</sub>. LR-CD may offer unique molecular recognition properties and can be produced biocatalytically from starch using cyclodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) in a short reaction time. LR-CD were isolated from glucose, CD<sub>6</sub> – CD<sub>8</sub> and other compounds by complexation of CD<sub>6</sub> – CD<sub>8</sub> as well as precipitation techniques. The yield of LR-CD (degree of polymerization from 9 to 21) was optimized using central composite design. Addition of polar organic solvents to the synthesis resulted in higher yields of LR-CD. LR-CD composed of 9 to 21 glucose units were successfully separated using reversed-phase of ODS-AQ chromatography and normal-phase of polyamine II chromatography. Maintaining optimized reaction conditions aided in a high yield of CD<sub>9</sub>; it could be separated with reasonable yield using a single step of polyamine II chromatography. A co-grinding method helped to obtain higher solubilization levels of glibenclamide, vitamin A acetate and vitamin D<sub>3</sub> in CD<sub>13</sub>, CD<sub>10</sub> and CD<sub>11</sub>, respectively when compared to other CD. Vitamin K<sub>1</sub> was solubilized in distilled water with CD<sub>6</sub> – CD<sub>13</sub> using a co-precipitation method. When compared with other CD, CD<sub>9</sub> was seen to be the best solubilizer. The analysis of complexes using ESI MS showed spironolactone and glibenclamide complexed with CD<sub>9</sub> and CD<sub>13</sub>, respectively.

Page generated in 0.0868 seconds