• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hot electron induced degradation in VLSI MOS devices

Zhao, Si Ping January 1993 (has links)
No description available.
2

Integration of photosynthetic pigment-protein complexes in dye sensitized solar cells towards plasmonic-enhanced biophotovoltaics

Yang, Yiqun January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the tremendous global energy crisis. Development of three generation of solar cells has promoted the best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to develop cost-effective biophotovoltaics that combines natural photosynthetic systems into artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing sensitizer to interface with semiconductive TiO₂ and plasmonic nanoparticles in DSSCs. The goal of this research is to understand the fundamental photon capture, energy transfer and charge separation processes of photosynthetic pigment-protein complexes along with improving biophotovoltaic performance based on this model system through tailoring engineering of TiO₂ nanostructures, attaching of the complexes, and incorporating plasmonic enhancement. The first study reports a novel approach to linking the spectroscopic properties of nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). The aggregation allowed reorganization between individual trimers which dramatically increased the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being electrostatically immobilized on amine-functionalized TiO₂ surface. The motivation of the second study is to get insights into the plasmonic effects on the nature of energy/charge transfer processes at the interface of photosynthetic protein complexes and artificial photovoltaic materials. Three types of core-shell (metal@TiO₂) plasmonic nanoparticles (PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC platform built on a unique open three-dimensional (3D) photoanode consisting of TiO₂ nanotrees. Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the LHCII/TiO₂ interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific artificial materials is a promising approach for high-performance biosolar cells. Furthermore, the final study reveals the mechanism of hot electron injection by employing a mesoporous core-shell (Au@TiO₂) network as a bridge material on a micro-gap electrode to conduct electricity under illumination and comparing the photoconductance to the photovolatic properties of the same material as photoanodes in DSSCs. Based on the correlation of the enhancements in photoconductance and photovoltaics, the contribution of hot electrons was deconvoluted from the plasmonic near-field effects.
3

Functional colloidal surface assemblies: Classical optics meets template-assisted self-assembly

Gupta, Vaibhav 09 December 2020 (has links)
Abstract: When noble metals particles are synthesized with progressively smaller dimensions, strikingly novel optical properties arise. For nanoscale particles, collective disturbances of the electron density known as localized surface plasmons resonances can arise, and these resonances are utilized in a variety of applications ranging from surface-enhanced molecular spectroscopy and sensing to photothermal cancer therapy to plasmon-driven photochemistry. Central to all of these studies is the plasmon’s remarkable ability to process light, capturing and converting it into intense near fields, heat, and even energetic carriers at the nanoscale. In the past decade, we have witnessed major advances in plasmonics which is directly linked with the much broader field of (colloidal) nanotechnology. These breakthroughs span from plasmon lasing and waveguides, plasmonic photochemistry and solar cells to active plasmonics, plasmonics nanocomposites and semiconductor plasmons. All the above-mentioned phenomena rely on precise spatial placement and distinct control over the dimensions and orientation of the individual plasmonic building blocks within complex one-, two- or three-dimensional complex arrangements. For the nanofabrication of metal nanostructures at surfaces, most often lithographic approaches, e.g. e-beam lithography or ion-beam milling are generally applied, due to their versatility and precision. However, these techniques come along with several drawbacks such as limited scalability, limited resolution, limited compatibility with silicon manufacturing techniques, damping effects due to the polycrystalline nature of the metal nanostructures and low sample throughput. Thus, there is a great demand for alternative approaches for the fabrication of metal nanostructures to overcome the above-mentioned limitations. But why colloids? True three-dimensionality, lower damping, high quality modes due to mono-dispersity, and the absence of grain boundaries make the colloidal assembly an especially competitive method for high quality large-scale fabrication. On top of that, colloids provide a versatile platform in terms of size, shape, composition and surface modification and dispersion media. 540The combination of directed self-assembly and laser interference lithography is a versatile admixture of bottom-up and top-down approaches that represents a compelling alternative to commonly used nanofabrication methods. The objective of this thesis is to focus on large area fabrication of emergent spectroscopic properties with high structural and optical quality via colloidal self-assembly. We focus on synergy between optical and plasmonic effects such as: (i) coupling between localized surface plasmon resonance and Bragg diffraction leading to surface lattice resonance; (ii) strong light matter interaction between guided mode resonance and collective plasmonic chain modes leading to hybrid guided plasmon modes, which can further be used to boost the hot-electron efficiency in a semiconducting material; (iii) similarly, bilayer nanoparticle chains leading to chiro-optical effects. Following this scope, this thesis introduces a real-time tuning of such exclusive plasmonic-photonic (hybrid) modes via flexible template fabrication. Mechanical stimuli such as tensile strain facilitate the dynamic tuning of surface lattice resonance and chiro-optical effects respectively. This expands the scope to curb the rigidity in optical systems and ease the integration of such systems with flexible electronics or circuits.:Contents Abstract Kurzfassung Abbreviations 1. Introduction and scope of the thesis 1.1. Introduction 1.1.1. Classical optics concepts 1.1.2. Top down fabrication methods and their challenges 1.1.3. Template-assisted self-assembly 1.1.4. Functional colloidal surface assemblies 1.2. Scope of the thesis 2. Results and Discussion 2.1. Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly 2.1.1. Fabrication of flexible 2D plasmonic lattice 2.1.2. Investigation of the influence of particle size distribution on SLR quality 2.1.3. Band diagram analysis of 2D plasmonic lattice 2.1.4. Strain induced tuning of SLR 2.1.5. SEM and force transfer analysis in 2D plasmonic lattice under various strain 2.2. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating 2.2.1. Fabrication of hybrid opto-plasmonic structure via template assisted self-assembly 2.2.2. Comparison of optical band diagram of three (plasmonic, photonic and hybrid) different structures in TE and TM modes 2.2.3. Simulative comparison of optical properties of hybrid opto-plasmonic NP chains with a grating of metallic gold bars 2.2.4. Effect of cover index variation with water as a cover medium 2.3. Hot electron generation via guided hybrid modes 2.3.1. Fabrication of the hybrid GMR structure via LIL and lift-off process 2.3.2. Spectroscopic and simulative analysis of hybrid opto-plasmonic structures of different periodicities 2.3.3. Comparative study of photocurrent generation in different plasmonic structures 2.3.4. Polarization dependent response at higher wavelength 2.3.5. Directed self-assembly of gold nanoparticles within grating channels of a dielectric GMR structure supported by titanium dioxide film 2.4. Active Chiral Plasmonics Based on Geometrical Reconfiguration 2.4.1. Chiral 3D assemblies by macroscopic stacking of achiral chain substrates 3. Conclusion 4. Zusammenfassung 5. Bibliography 6. Appendix 6.1. laser interference lithography 6.2. Soft molding 6.3. Determine fill factor of plasmonic lattice 6.4. 2D plasmonic lattice of Au_BSA under strain 6.5. Characterizing order inside a 2D lattice 6.6. Template-assisted colloidal self-assembly 6.7. Out of plane lattice resonance in 1D and 2D lattices 6.8. E-Field distribution at out of plane SLR mode for 1D lattices of various periodicity with AOI 20° 6.9. Refractive index of PDMS and UV-PDMS 6.10. Refractive index measurement for sensing 6.11. Optical constants of TiO2, ma-N 405 photoresist and glass substrate measured from spectroscopic ellipsometry Acknowledgement/ Danksagung Erklärung & Versicherung List of Publications

Page generated in 0.1022 seconds