• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Brake Judder - An Investigation of the Thermo-elastic and Thermo-plastic Effects during Braking

Bryant, David, Fieldhouse, John D., Talbot, C.J. January 2011 (has links)
This paper considers a study of the thermo-elastic behaviour of a disc brake during heavy braking. The work is concerned with working towards developing design advice that provides uniform heating of the disc, and equally important, even dissipation of heat from the disc blade. The material presented emanates from a combination of modeling, on-vehicle testing but mainly laboratory observations and subsequent investigations. The experimental work makes use of a purpose built high speed brake dynamometer which incorporates the full vehicle suspension for controlled simulation of the brake and vehicle operating conditions. Advanced instrumentation allows dynamic measurement of brake pressure fluctuations, disc surface temperature and discrete vibration measurements. Disc run-out measurements using non-contacting displacement transducers show the disc taking up varying orders of deformation ranging from first to third order during high speed testing. This surface interrogation during braking identifies disc deformation including disc warping, 'ripple' and the effects of 'hot spotting'. The mechanical measurements are complemented by thermal imaging of the brake, these images showing the vane and vent patterns on the surface of the disc. The results also include static surface scanning, or geometry analysis, of the disc which is carried out at appropriate stages during testing. The work includes stress relieving of finished discs and subsequent dynamometer testing. This identifies that in-service stress relieving, due to high heat input during braking, is a strong possibility for the cause of disc 'warping'. It is also seen that an elastic wave is established during a braking event, the wave disappearing on release of the brake.
2

Influence des garnitures de frein sur les sollicitations thermiques des disques TGV et conséquences sur les risques de fissuration / Influence of pad type on thermal localisations in TGV brake discs and consequences on cracking risks

Wicker, Paul 17 December 2009 (has links)
L’occurrence en service commercial de fissures macroscopiques dans certains disques de frein TGV a pu être reliée au type de garniture utilisé. L’objectif de cette thèse est de comprendre cette relation, d’identifier les paramètres d’influence et de proposer des voies d’amélioration pour la conception de garnitures à risque de fissuration réduit. Le comportement thermique de quatre couples disque-garnitures est d’abord analysé par le biais d’une campagne expérimentale de freinage originale. Elle met en évidence différents types de localisations thermiques et permet d’identifier des signatures thermiques caractéristiques des garnitures. Le lien entre localisations thermiques et risques de fissuration est ensuite établi à l’aide d’une modélisation thermomécanique. Des indicateurs tenant compte des caractéristiques spatiales et temporelles des localisations thermiques ainsi que des niveaux de température atteints sont proposés. Ils permettent de classer les garnitures testées dans un graphe de « criticité ». Enfin, une étude d’influence des caractéristiques mécaniques et thermiques des garnitures sur les localisations engendrées permet de dégager des préconisations et des voies d’amélioration pour la conception de nouvelles garnitures. La caractérisation expérimentale du comportement de deux nouvelles garnitures, l’une s’approchant le plus des préconisations faites, l’autre s’en éloignant fortement, montre la pertinence de l’approche développée et la validité des préconisations / The occurrence of macroscopic cracks in some TGV brake discs in commercial service has been linked to the pad type used. The objective of this thesis is to understand this relationship, to identify sensitive parameters and to propose guidelines to the design of pads reducing the risk of cracking.The thermal behavior of four disc-pad couples is first analyzed through an original experimental campaign of braking. It highlights various types of thermal localisations and enables to identify thermal signatures characteristic of the various pads. The relationship between thermal localisation and risk of cracking is then determined using thermomechanical modeling. Some indicators taking into account spatial and temporal characteristics of thermal localisations and temperature levels achieved are proposed. They enable to classify the tested pads in a graph of "criticity". Finally, a study of the influence of mechanical and thermal properties of pads on the thermal localisations occurrence enables to propose guidelines and improving ways for the design of new pads. An experimental characterization of the behavior of two new pads, one very close to the given recommendations, the other strongly away from them, shows the relevance of the approach and the validity of the present recommendations
3

A 3D Finite Element Simulation of Ventilated Brake Disc Hot Spotting

Tang, Jinghan, Bryant, David, Qi, Hong Sheng 15 June 2016 (has links)
No / Hot spots are high temperature thermal gradients and localisations that are circumferentially distributed on a disc surface which can occur during heavy duty braking. Vibrations and noise can be triggered by hot spotting as well as damage to the disc surface. The experimental investigations suggest that the trigger condition and distribution of hot spots are related to the disc geometry, especially for ventilated discs. To investigate the effects of geometry and structure of a ventilated disc on hot spotting, a 3D finite element model was established. A fast simulation method of hot spotting in 3D was implemented in the model to enable a parametric analysis to be performed more efficiently. The results were validated using experimental data from a laboratory dynamometer.
4

Simplified three-dimensional finite element hot-spotting modelling of a pin-mounted vented brake disc: an investigation of hot-spotting determinants

Tang, Jinghan, Bryant, David, Qi, Hong Sheng, Whiteside, Benjamin R., Babenko, Maksims 29 June 2017 (has links)
Yes / Hot spotting is a thermal localisation phenomenon in which multiple hot regions form on a brake disc surface during high energy and/or high speed braking events. As an undesired problem, hot spots can result in high order brake judder, audible drone and thermal cracking. This paper presents a finite element model for hot spot modelling which introduces the classical axisymmetric assumptions to the brake pad in 3D by scaling the material properties combined with a subroutine to simulate the heat generation instead of modelling the rotation of the brake pad. The results from the initial feasibility models showed significant improvement in computing efficiency with acceptable accuracy when compared to a traditional FE model without such simplifications. This method was then applied to the 3D simulation of hot spotting on a realistic ventilated brake disc/pad pair and the results showed good correlation with experiments. In order to improve the understanding of the hot spotting mechanism, parametric studies were performed including the effects of solid and ventilated disc geometry, rotational speed and energy, pins, disc run-out, and brake pad length. Based on the analysis of the results, it was identified that the vents and pins affected the hot spot distribution. Speed was shown to be more important on the hot spot generation time and distribution than either the pressure or total energy input. Brake disc run-out was shown to affect the magnitude of both hot spot temperature and height due to the non-linear relationship between local deformation, contact pressure and heat generation. Finally, increasing the brake pad length generated fewer hot spots but the temperature of each hot spot increased.

Page generated in 0.0914 seconds