Spelling suggestions: "subject:"household must"" "subject:"household just""
1 |
CHARACTERIZATION OF ANTIMONY SPECIES USING MICRO-ANALYTICAL SYNCHROTRON TECHNIQUES ON HOUSEHOLD DUST SAMPLES FROM OTTAWA, CANADAWALDEN, ZOEY 04 January 2011 (has links)
Rasmussen et al. (2001) observed that Sb concentrations were enriched in household dust relative to outdoor garden soil samples and suspected the enrichment may be due to anthropogenic internal sources. Antimony trioxide (Sb2O3) is commonly found in various halogen flame-retardants and is a suspected carcinogen (IARC, 1989). North Americans spend a significant proportion of their time indoors, and are frequently exposed to dust. Therefore, characterizing potentially harmful metal(loid)s (i.e. Sb2O3) has become of increasing priority to various governmental agencies.
A combination of micro-analytical synchrotron techniques (micro X-ray fluorescence (µXRF), micro X-ray diffraction (µXRD), micro X-ray absorption near-edge spectroscopy (µXANES)) and environmental scanning electron microscopy (ESEM) were used to characterize five archived samples provided by Health Canada. Two samples were in the 90th percentile for Sb content in household dust from a suite of 50 houses studied by Rasmussen et al. (2001). The corresponding garden soils of these houses were also analysed. The fifth sample was a children’s bedroom from a house studied in detail by Walker et al. (2010).
Synchrotron microanalysis of Sb presents many challenges, given its high absorption energy (31 KeV), and the relatively low concentrations and small particles in house dust. An appropriate experimental set-up was optimized after several trials. Antimony within household dust is currently not of toxicological concern (EU, 2008). Micro-XRF maps of household dust samples and corresponding garden soils from sample to sample displayed distinct element correlations of Sb with other elements. This suggests that Sb species present within homes are not restricted to a single source. Potential sources are Pb based or Sb containing pigments (Naples Yellow), metal alloys and possibly flame-retardants. The lack of correlation between Sb hot spots in the garden soil sample compared to the household dust suggests the source of interior Sb may not be external.
A collaborative project with another student in the Environmental Studies Masters program was conducted to examine the potential for interdisciplinary work. Effective communication was the greatest barrier but there was success in the creation of a forum where people could critically think about the various nuances of household dust. / Thesis (Master, Environmental Studies) -- Queen's University, 2010-12-24 14:37:03.016
|
2 |
Avaliação da contaminação por elementos inorgânicos e ésteres ftálicos em poeira doméstica da região metropolitana de São Paulo / Assessment of contamination for inorganic elements and phthalate esters in household dust from the metropolitan region of São PauloScapin, Valdirene de Oliveira 07 December 2009 (has links)
A poeira doméstica tem sido identificada como um importante vetor de exposição por substâncias inorgânicas e orgânicas, potencialmente tóxicas, em crianças e adultos. A composição da poeira tem uma forte influência de contaminantes provenientes de ambientes internos e externos. Durante o uso normal ou por intempéries, de uma variedade de artefatos e materiais, as substâncias químicas são desincorporadas para o meio ambiente. Uma vez liberadas, elas tendem a se acumular e enriquecer na poeira doméstica; e por meio de exposição contínua (mecanismos de inalação, ingestão e contato direto com a pele) afeta a saúde humana. Neste trabalho, foi realizada uma avaliação da contaminação por constituintes inorgânicos e ésteres ftálicos em poeira doméstica; e a correlação com as prováveis fontes antropogênicas. As amostras de poeira foram coletadas de 69 residências, nos bairros Pirituba, Freguesia do Ó, Jaraguá e Perus, da região metropolitana de São Paulo, entre 2006 e 2008. As amostras foram separadas nas frações: 850, 850-300, 300-150, 150-75, 75- 63 e <63 μm. A análise por fluorescência de raios X (WDXRF) mostrou a presença de Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr e Pb. A análise por cromatografia de fase gasosa acoplada o espectrômetro de massa (GCMS) a presença de ésteres ftálicos (DEHP, DnBP, DEP, DEHA, BBP e DMP). A partir do fator de enriquecimento (FE), os elementos P, S, Cr, Ni, Cu, Zn e Pb foram classificados como sendo significantemente e extremamente enriquecidos na poeira. As contribuições naturais e antropogênicas foram identificadas por meio de ferramentas estatísticas como análise de fatores (AF) e cluster (AC). Os elementos Cr, Ni, Cu, Zn e Pb foram encontrados em concentrações significativamente elevadas com relação aos valores de exposição total (ingestão, inalação e contato dérmico) e de risco. / Household dust has been identified as an important vector of exposure by inorganic and organic substances potentially toxic in children and adults. The dust composition has a strong influence of contaminants provided from internal and external environments. During the natural process of wearing or weather incidents of artifacts and materials variety, the chemical substances are released into the environment in the steam form or by leaching from final products. Once released, they can be accumulated and enriched in the dust; and by continuous exposure (inhalation, ingestion and dermal contact mechanisms), these substances are harmful to human health. In this work, a study to determine the inorganic constituents and phthalate esters concentrations in residential indoor environment dust samples, correlating them with the probable anthropogenic sources was proposed. Dust samples were collected from 69 residences in neighborhoods Pirituba, Freguesia do Ó, Jaraguá and Perus of the São Paulo metropolitan region, using a domestic vacuum cleaner, between 2006 and 2008. The samples were sieved in the fractions of 850, 850-300, 300-150, 150-75, 75-63 and <63 μm. The analysis by X-ray fluorescence (WDXRF) showed the presence of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr and Pb. The presence of phthalate esters (DEHP, DnBP, DEP, DEHA, DMP and BBP) was detected, by GCMS analyses. From the enrichment factor (EF), the elements P, S, Cr, Ni, Cu, Zn and Pb were classified as being significant and extremely enriched in the dust. The natural and anthropogenic contributions by statistical tools as factor analysis (AF) and cluster were identified. The elements Cr, Ni, Cu, Zn and Pb were present significantly elevated concentrations in relation to the total exposure values (ingestion, inhalation and skin contact) and to risk.
|
3 |
Avaliação da contaminação por elementos inorgânicos e ésteres ftálicos em poeira doméstica da região metropolitana de São Paulo / Assessment of contamination for inorganic elements and phthalate esters in household dust from the metropolitan region of São PauloValdirene de Oliveira Scapin 07 December 2009 (has links)
A poeira doméstica tem sido identificada como um importante vetor de exposição por substâncias inorgânicas e orgânicas, potencialmente tóxicas, em crianças e adultos. A composição da poeira tem uma forte influência de contaminantes provenientes de ambientes internos e externos. Durante o uso normal ou por intempéries, de uma variedade de artefatos e materiais, as substâncias químicas são desincorporadas para o meio ambiente. Uma vez liberadas, elas tendem a se acumular e enriquecer na poeira doméstica; e por meio de exposição contínua (mecanismos de inalação, ingestão e contato direto com a pele) afeta a saúde humana. Neste trabalho, foi realizada uma avaliação da contaminação por constituintes inorgânicos e ésteres ftálicos em poeira doméstica; e a correlação com as prováveis fontes antropogênicas. As amostras de poeira foram coletadas de 69 residências, nos bairros Pirituba, Freguesia do Ó, Jaraguá e Perus, da região metropolitana de São Paulo, entre 2006 e 2008. As amostras foram separadas nas frações: 850, 850-300, 300-150, 150-75, 75- 63 e <63 μm. A análise por fluorescência de raios X (WDXRF) mostrou a presença de Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr e Pb. A análise por cromatografia de fase gasosa acoplada o espectrômetro de massa (GCMS) a presença de ésteres ftálicos (DEHP, DnBP, DEP, DEHA, BBP e DMP). A partir do fator de enriquecimento (FE), os elementos P, S, Cr, Ni, Cu, Zn e Pb foram classificados como sendo significantemente e extremamente enriquecidos na poeira. As contribuições naturais e antropogênicas foram identificadas por meio de ferramentas estatísticas como análise de fatores (AF) e cluster (AC). Os elementos Cr, Ni, Cu, Zn e Pb foram encontrados em concentrações significativamente elevadas com relação aos valores de exposição total (ingestão, inalação e contato dérmico) e de risco. / Household dust has been identified as an important vector of exposure by inorganic and organic substances potentially toxic in children and adults. The dust composition has a strong influence of contaminants provided from internal and external environments. During the natural process of wearing or weather incidents of artifacts and materials variety, the chemical substances are released into the environment in the steam form or by leaching from final products. Once released, they can be accumulated and enriched in the dust; and by continuous exposure (inhalation, ingestion and dermal contact mechanisms), these substances are harmful to human health. In this work, a study to determine the inorganic constituents and phthalate esters concentrations in residential indoor environment dust samples, correlating them with the probable anthropogenic sources was proposed. Dust samples were collected from 69 residences in neighborhoods Pirituba, Freguesia do Ó, Jaraguá and Perus of the São Paulo metropolitan region, using a domestic vacuum cleaner, between 2006 and 2008. The samples were sieved in the fractions of 850, 850-300, 300-150, 150-75, 75-63 and <63 μm. The analysis by X-ray fluorescence (WDXRF) showed the presence of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr and Pb. The presence of phthalate esters (DEHP, DnBP, DEP, DEHA, DMP and BBP) was detected, by GCMS analyses. From the enrichment factor (EF), the elements P, S, Cr, Ni, Cu, Zn and Pb were classified as being significant and extremely enriched in the dust. The natural and anthropogenic contributions by statistical tools as factor analysis (AF) and cluster were identified. The elements Cr, Ni, Cu, Zn and Pb were present significantly elevated concentrations in relation to the total exposure values (ingestion, inhalation and skin contact) and to risk.
|
4 |
Methodologies for Estimating Bioaccessibility of Six Metals in Household Dust: Zn, Pb, Cd, Cu, Ni, and CrBoros, Kristina January 2015 (has links)
The purpose of this study is to evaluate the relative advantages and disadvantages of two approaches for estimating oral bioaccessibility using a physiologically-based extraction technique (PBET): a simple gastric phase simulation and a two-phase gastrointestinal simulation. Bioaccessibility estimates of six metals prevalent in Canadian contaminated sites (zinc, lead, cadmium, copper, nickel, and chromium) were compared using the gastric phase simulation alone and the complete gastrointestinal simulation. Samples included vacuum dust samples from 33 homes, certified dust and soil reference materials, and a house dust control sample. Bioaccessibility measurements using the gastric phase simulation were greater than or equal to measurements obtained using the gastrointestinal simulation for the six studied metals. This research found that for the six studied metals, a simple simulation of the gastric phase provides the most conservative and cost-effective approach for estimating oral bioaccessibility of ingested metals.
|
Page generated in 0.0522 seconds