• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of mechanical properties of thin films deposited by magnetron sputtering methods

Källkvist, Lova January 2024 (has links)
The aim of this thesis is to determine the mechanical properties of copper, titanium and carbon thin films deposited on foil substrates, and identify how the properties are affected by the deposition process. This is important when such coated foils are subjected to mechanical deformation during applications. Three coating materials, Cu, Ti, and C, were evaluated on PET and Al foils. The materials were deposited by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). The crack initiation and propagation during tensile tests were investigated in-situ by a SEM. The coatings’ crack onset strain (COS), cohesive strength, interfacial shear strength (IFSS), and Weibull shape and scale parameters were successfully determined from the experimental data. The results showed the Cu coatings had similar cohesive strengths and IFSS, independent of the deposition process. The main difference was the COS, where thin films deposited with ion assistance displayed a higher value. The coatings also displayed different morphologies that clearly influenced the crack propagation. Larger grains hindered the crack propagation and resulted in a more ductile fragmentation, with coatings displaying short and tortuous cracks. All Ti films displayed similar fragmentation and thus mechanical properties, despite small differences in morphology. However, the surface roughness of the Al foil influences the results. Localized stresses arise in the rolling tracks from the foil production and facilitates the crack propagation, thus affecting the fragmentation of the coatings. Lastly, it could be shown that the addition of a thin Ti adhesion layer resulted in a fully adherent C film.

Page generated in 0.0352 seconds