Spelling suggestions: "subject:"human 1activity"" "subject:"human 2activity""
1 |
A hybrid gait recognition solution using video and ground contact informationFullenkamp, Adam M. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: James G. Richards, College of Health Sciences. Includes bibliographical references.
|
2 |
Survey of Sites Where Notophthalmus viridescens May Come into Contact with Human ActivityBowen, Noah 07 April 2022 (has links)
The Appalachian Mountains are the source of the greatest diversity of salamanders in the world and the preservation and protection of this unique regional diversity are of important consideration. Salamanders can be subject to numerous diseases like ranaviruses and chytrid fungi, but an important factor to consider is other stressors that may affect salamander’s ability to recover from outbreaks. Human activity, be it habitat disruption or providing some vector for disease spread between populations and species, may have large impacts upon salamander population health. Identifying sites where salamanders and human activity are frequently overlapping in the territory could provide sites for future comparisons between more isolated populations and allow a better understanding of how humans may affect salamander populations.
To identify sites where human activity may be common, a newt that is a quick colonizer of ephemeral pools, the Eastern Newt (Notophthalmus viridescens) was selected to observe. These sites were qualified upon their likeliness to support Notophthalmus viridescens individuals and other amphibian life cycles. Details such as forested canopy, ephemeral pools or stationary water ponds, leaf litter, and other amphibian activity were qualified by their presence or lack thereof. These sites were surveyed during fall thru winter, and the distance between these sites and closest human activity centers were measured in meters using Google Maps. Such activity centers could be classified as residences, public buildings, roads, trails, fences, or land disturbed by human activity like a construction site. Some sites will be purposely further away from human activity as for some comparison to more isolated sites. These sites should show that Notophthalmus viridescens can be found near human activity centers and therefore may be subject to be much influence from them.
|
3 |
A Multi-Formal Languages Collaborative Scheme for Complex Human Activity Recognition and Behavioral Patterns ExtractionAngeleas, Anargyros 06 June 2018 (has links)
No description available.
|
4 |
Detecting irregularity in videos using spatiotemporal volumes.January 2007 (has links)
Li, Yun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 68-72). / Abstracts in English and Chinese. / Abstract --- p.I / 摘要 --- p.III / Acknowledgments --- p.IV / List of Contents --- p.VI / List of Figures --- p.VII / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Visual Detection --- p.2 / Chapter 1.2 --- Irregularity Detection --- p.4 / Chapter Chapter 2 --- System Overview --- p.7 / Chapter 2.1 --- Definition of Irregularity --- p.7 / Chapter 2.2 --- Contributions --- p.8 / Chapter 2.3 --- Review of previous work --- p.9 / Chapter 2.3.1 --- Model-based Methods --- p.9 / Chapter 2.3.2 --- Statistical Methods --- p.11 / Chapter 2.4 --- System Outline --- p.14 / Chapter Chapter 3 --- Background Subtraction --- p.16 / Chapter 3.1 --- Related Work --- p.17 / Chapter 3.2 --- Adaptive Mixture Model --- p.18 / Chapter 3.2.1 --- Online Model Update --- p.20 / Chapter 3.2.2 --- Background Model Estimation --- p.22 / Chapter 3.2.3 --- Foreground Segmentation --- p.24 / Chapter Chapter 4 --- Feature Extraction --- p.28 / Chapter 4.1 --- Various Feature Descriptors --- p.29 / Chapter 4.2 --- Histogram of Oriented Gradients --- p.30 / Chapter 4.2.1 --- Feature Descriptor --- p.31 / Chapter 4.2.2 --- Feature Merits --- p.33 / Chapter 4.3 --- Subspace Analysis --- p.35 / Chapter 4.3.1 --- Principal Component Analysis --- p.35 / Chapter 4.3.2 --- Subspace Projection --- p.37 / Chapter Chapter 5 --- Bayesian Probabilistic Inference --- p.39 / Chapter 5.1 --- Estimation of PDFs --- p.40 / Chapter 5.1.1 --- K-Means Clustering --- p.40 / Chapter 5.1.2 --- Kernel Density Estimation --- p.42 / Chapter 5.2 --- MAP Estimation --- p.44 / Chapter 5.2.1 --- ML Estimation & MAP Estimation --- p.44 / Chapter 5.2.2 --- Detection through MAP --- p.46 / Chapter 5.3 --- Efficient Implementation --- p.47 / Chapter 5.3.1 --- K-D Trees --- p.48 / Chapter 5.3.2 --- Nearest Neighbor (NN) Algorithm --- p.49 / Chapter Chapter 6 --- Experiments and Conclusion --- p.51 / Chapter 6.1 --- Experiments --- p.51 / Chapter 6.1.1 --- Outdoor Video Surveillance - Exp. 1 --- p.52 / Chapter 6.1.2 --- Outdoor Video Surveillance - Exp. 2 --- p.54 / Chapter 6.1.3 --- Outdoor Video Surveillance - Exp. 3 --- p.56 / Chapter 6.1.4 --- Classroom Monitoring - Exp.4 --- p.61 / Chapter 6.2 --- Algorithm Evaluation --- p.64 / Chapter 6.3 --- Conclusion --- p.66 / Bibliography --- p.68
|
5 |
Detecting Hand-Ball Events in VideoMiller, Nicholas January 2008 (has links)
We analyze videos in which a hand interacts with a basketball. In this work, we present a computational system which detects and classifies hand-ball events, given the trajectories of a hand and ball. Our approach is to determine non-gravitational parts of the ball's motion using only the motion of the hand as a reliable cue for hand-ball events.
This thesis makes three contributions. First, we show that hand motion can be segmented using piecewise fifth-order polynomials inspired by work in motor control. We make the remarkable experimental observation that hand-ball events have a phenomenal correspondence to the segmentation breakpoints. Second, by fitting a context-dependent gravitational model to the ball over an adaptive window, we can isolate places where the hand is causing non-gravitational motion of the ball. Finally, given a precise segmentation, we use the measured velocity steps (force impulses) on the ball to detect and classify various event types.
|
6 |
Detecting Hand-Ball Events in VideoMiller, Nicholas January 2008 (has links)
We analyze videos in which a hand interacts with a basketball. In this work, we present a computational system which detects and classifies hand-ball events, given the trajectories of a hand and ball. Our approach is to determine non-gravitational parts of the ball's motion using only the motion of the hand as a reliable cue for hand-ball events.
This thesis makes three contributions. First, we show that hand motion can be segmented using piecewise fifth-order polynomials inspired by work in motor control. We make the remarkable experimental observation that hand-ball events have a phenomenal correspondence to the segmentation breakpoints. Second, by fitting a context-dependent gravitational model to the ball over an adaptive window, we can isolate places where the hand is causing non-gravitational motion of the ball. Finally, given a precise segmentation, we use the measured velocity steps (force impulses) on the ball to detect and classify various event types.
|
7 |
Does small-scale land use affect the understory birds negative in the Peruvian National Reserve Allpahuayo Mishana? / Påverkar småskalig markanvändning undervegetations fåglarna negativt i det peruanska reservatet Allpahuayo Mishana?Svensson, Ofir January 2014 (has links)
Human activities that lead to fragmentation and habitat loss are big problems in the world. Due to global climate change the negative effects of fragmented habitats can be catastrophic for many organisms. In the Amazon rainforest, that is most sensitive to human impact, stands a big risk to lose its species diversity. Fragmentation and climate change together seems to escalate the death rate of rainforest plants and that will change the whole ecosystem. Birds and insects are depending on the trees and the trees faces big challenges now. Many of the rainforest organisms have been noticed to emigrate further up to northern altitudes due to the warmer climate and maybe also because of deforestation. Many of the lowland forest birds are predicted to distribute from their origin habitats. The national reserve Allpahuayo Mishana in the Peruvian Amazon is known for its diversity of birds. It is a big challenge for the reserve to maintain the origin forest composition from climate change, which will lead to losses of species. The reserve allows the local community to utilize the land for small-scale uses inside the protected zone. Many of the birds are sensitive for external disturbance. Most human activities are resulting in that the forest becomes less dense, which can lead to that the territory for the birds decreases. This makes it important for the reserve to improve the human land use not to restrict the birds' habitat inside the reserve. This project will investigate if the small-scale land uses affects the understory birds’ diversity and habitat negative. The purpose is to see if the fragmented forests in the reserve, closest to the utilized land, can functioning as a secondary forest for the understory birds, or are the understory birds limited by the small-scale land use, in the national reserve Allpahuayo Mishana? Four sites with various human activities were chosen to investigate if the sites contain any understory birds. The result showed that the most disturbed sites had poor bird diversity compare to the sites with no human disturbance.
|
8 |
Analysis of the everyday human environment via large scale commonsense reasoning /Pentney, William. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (p. 105-112).
|
9 |
A natural user interface architecture using gestures to facilitate the detection of fundamental movement skillsAmanzi, Richard January 2015 (has links)
Fundamental movement skills (FMSs) are considered to be one of the essential phases of motor skill development. The proper development of FMSs allows children to participate in more advanced forms of movements and sports. To be able to perform an FMS correctly, children need to learn the right way of performing it. By making use of technology, a system can be developed that can help facilitate the learning of FMSs. The objective of the research was to propose an effective natural user interface (NUI) architecture for detecting FMSs using the Kinect. In order to achieve the stated objective, an investigation into FMSs and the challenges faced when teaching them was presented. An investigation into NUIs was also presented including the merits of the Kinect as the most appropriate device to be used to facilitate the detection of an FMS. An NUI architecture was proposed that uses the Kinect to facilitate the detection of an FMS. A framework was implemented from the design of the architecture. The successful implementation of the framework provides evidence that the design of the proposed architecture is feasible. An instance of the framework incorporating the jump FMS was used as a case study in the development of a prototype that detects the correct and incorrect performance of a jump. The evaluation of the prototype proved the following: - The developed prototype was effective in detecting the correct and incorrect performance of the jump FMS; and - The implemented framework was robust for the incorporation of an FMS. The successful implementation of the prototype shows that an effective NUI architecture using the Kinect can be used to facilitate the detection of FMSs. The proposed architecture provides a structured way of developing a system using the Kinect to facilitate the detection of FMSs. This allows developers to add future FMSs to the system. This dissertation therefore makes the following contributions: - An experimental design to evaluate the effectiveness of a prototype that detects FMSs - A robust framework that incorporates FMSs; and - An effective NUI architecture to facilitate the detection of fundamental movement skills using the Kinect.
|
10 |
Objectively recognizing human activity in body-worn sensor data with (more or less) deep neural networks / Objektiv igenkänning av mänsklig aktivitet från accelerometerdata med (mer eller mindre) djupa neurala nätverkBroomé, Sofia January 2017 (has links)
This thesis concerns the application of different artificial neural network architectures on the classification of multivariate accelerometer time series data into activity classes such as sitting, lying down, running, or walking. There is a strong correlation between increased health risks in children and their amount of daily screen time (as reported in questionnaires). The dependency is not clearly understood, as there are no such dependencies reported when the sedentary (idle) time is measured objectively. Consequently, there is an interest from the medical side to be able to perform such objective measurements. To enable large studies the measurement equipment should ideally be low-cost and non-intrusive. The report investigates how well these movement patterns can be distinguished given a certain measurement setup and a certain network structure, and how well the networks generalise to noisier data. Recurrent neural networks are given extra attention among the different networks, since they are considered well suited for data of sequential nature. Close to state-of-the-art results (95% weighted F1-score) are obtained for the tasks with 4 and 5 classes, which is notable since a considerably smaller number of sensors is used than in the previously published results. Another contribution of this thesis is that a new labeled dataset with 12 activity categories is provided, consisting of around 6 hours of recordings, comparable in number of samples to benchmarking datasets. The data collection was made in collaboration with the Department of Public Health at Karolinska Institutet. / Inom ramen för uppsatsen testas hur väl rörelsemönster kan urskiljas ur accelerometerdatamed hjälp av den gren av maskininlärning som kallas djupinlärning; där djupa artificiellaneurala nätverk av noder funktionsapproximerar mappandes från domänen av sensordatatill olika fördefinerade kategorier av aktiviteter så som gång, stående, sittande eller liggande.Det finns ett intresse från den medicinska sidan att kunna mäta fysisk aktivitet objektivt,bland annat eftersom det visats att det finns en korrelation mellan ökade hälsorisker hosbarn och deras mängd daglig skärmtid. Denna typ av mätningar ska helst kunna göras medicke-invasiv utrustning till låg kostnad för att kunna göra större studier.Enklare nätverksarkitekturer samt återimplementeringar av bästa möjliga teknik inomområdet Mänsklig aktivitetsigenkänning (HAR) testas både på ett benchmarkingdataset ochpå egeninhämtad data i samarbete med Institutet för Folkhälsovetenskap på Karolinska Institutetoch resultat redovisas för olika val av möjliga klassificeringar och olika antal dimensionerper mätpunkt. De uppnådda resultaten (95% F1-score) på ett 4- och 5-klass-problem ärjämförbara med de bästa tidigare publicerade resultaten för aktivitetsigenkänning, vilket äranmärkningsvärt då då betydligt färre accelerometrar har använts här än i de åsyftade studierna.Förutom klassificeringsresultaten som redovisas bidrar det här arbetet med ett nyttinhämtat och kategorimärkt dataset; KTH-KI-AA. Det är jämförbart i antal datapunkter medspridda benchmarkingdataset inom HAR-området.
|
Page generated in 0.0407 seconds