• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring the improvement of human cell cryopreservation

Morris, Timothy J. January 2015 (has links)
Regenerative medicine is an emerging technology and with hundreds of cell therapies currently in clinical trials there is a need to expand the limited knowledge related to their storage, shipment and preservation. The most widely used medium for human cell cryopreservation is 10%wt dimethyl sulfoxide (DMSO) in serum. However given its potential toxicity, DMSO usage is a key issue in cryopreservation. Methods specify the need to reduce cell exposure time to DMSO above 0°C as much as possible but the maximum amount of time cells can be exposed to DMSO to prevent a detrimental effect needs to be clarified. There are also regulatory issues and concerns with the xenotoxicity, ethics and supply of the other core component in the standard cryomedia formulation: Foetal Bovine Serum (FBS). Developing a viable alternative to FBS is crucial. In cryobiology literature thawing appears poorly understood. A stable process is as vital as freezing to prevent injury to cells. Protocols are currently too vague for cell therapy regulation and need improvement. The time dependent DMSO cytotoxicity was evaluated by overexposing cells to DMSO during and/or after cryopreservation. A broad investigation found that after 1 hour overexposure post thaw viability of human mesenchymal stem cells (hMSCs) was reduced from 96.3±0.6% to 74.1±4.0% and the co-expression of five key hMSC markers was changed from 97.9±1.3% to 68.3±2.6%. This significant change could cause indicate a change in product efficacy and affect patient health, to prevent this, DMSO exposure must be kept to below 1 hour. A range of alternative vehicle solutions were screened and human platelet lysate (hPL) investigated as an alternative. In depth experimentation with hPL as a cryopreservation vehicle solution and culture supplement (in place of FBS) found it to be a worthy, statistically similar alternative. With no xenological or ethical concerns, lower costs than other serum-free alternatives hPL could allow for a move away from xenological components. A heat transfer model was developed and determined that 720J is required to thaw a vial. Using the heat transfer model and additional factors such as pre-thaw stabilisation and on thaw dilution, a two-stage experiment found that the current standard process (warming in a 37°C waterbath) within the current paradigm of a 1.8mL cryovial is optimal but further work is required to define the process for scaled-up product.
2

Evalutation of Human Platelet Lysate in NK Cell Culture

Williamson, Elizabeth 01 January 2020 (has links)
Natural Killer (NK) cells can recognize and lyse a large variety of tumor cells and have been of interest as a potential cancer treatment option. Our group has developed a particle-based NK cell expansion method that utilizes plasma membrane particles (PM-particles) derived from K562 cells genetically engineered to express membrane bound IL21 and 41BBL(K562-mbIL21-41BBL), two proteins that stimulate growth and activity of NK cells. This method selectively expands highly cytotoxic NK cells > 400-fold in 14 days of culture. Currently NK cells are expanded in vitro using Fetal Bovine Serum (FBS) as a serum-supplement to promote cell growth. While effective, the use of animal products is not preferred in cell cultures grown for clinical purposes. This project tested Human Platelet Lysates (HPL) as a potential replacement for FBS in NK cell culture. NK cells were expanded using PM21-particle based expansion method with either FBS or HPL as supplements. Their growth characteristics, phenotype and functionality were assessed and compared. Results of this study determined that HPL is a viable option to replace FBS in NK cell culture for clinical applications, as there was no significant difference between the two serum supplements.

Page generated in 0.0826 seconds