• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of the regioselectivity of human UDP-glucuronosyltransferase isozymes with three common sub-classes of flavonoids via metal complexation and tandem mass spectrometry

Robotham, Scott Allen 28 February 2013 (has links)
Based on reactions with two flavanones, three flavonols, and five flavones the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC-MS/MS fragmentation patterns of [Co(II)(flavonoid – H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones, flavonols and flavones. The UGT1A enzyme selectivities are affected by the presence of a hydroxyl group at the 3, 6, 4’, or 3’ positions as well as by the presence of a methoxy at the 3’ position. The UGT2B enzymes show poor to no reactivity with the flavonols or flavones. This result implies that the greater planarity of the flavonols and flavones compared to structure of flavanones inhibits interaction with the UGT2 enzymes. For baicalein and scutellarein, three of the UGT1A isozymes (1A8, 1A9, and 1A10) resulted in the formation of 6-O glucuronides, enabling the fragmentation rules for the metal complexation/MS/MS strategy to be expanded. / text

Page generated in 0.0754 seconds