• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the development of neuroimmune proteins in the human primary visual cortex

Jeyanesan, Ewalina January 2020 (has links)
Neuroimmune proteins are involved in a wide array of biological functions throughout brain development. Importantly, these molecular mechanisms regulate the activity-dependent sculpting of neural circuits during the critical period. Abnormal expression of these molecular mechanisms, especially in early development, is linked to the emergence of neurodevelopmental disorders. Despite having central roles in both normal and pathological conditions, very little is known about the lifespan expression of neuroimmune proteins in the human cortex. As studies exploring the relationship between inflammation and disease tend to rely on animal models, unpacking immune lifespan trajectories in the human brain will be essential for translational research. Furthermore, it will aid the development of timely and effective therapeutic interventions for neurodevelopmental disorders. In my thesis, I characterize the development of 72 neuroimmune proteins in 30 postmortem tissue samples of the human primary visual cortex. These samples cover the lifespan from 20 days to 79 years. I compare the developmental profiles of these immune markers to those of well-studied classic neural proteins including glutamatergic, GABAergic and other synaptic plasticity-related markers. Using a data-driven approach, I found that the 72 neuroimmune proteins share approximately eight developmental patterns, most of which undulate across the lifespan. Furthermore, I used unsupervised hierarchical clustering to show that the development of neuroimmune proteins in the human visual cortex varies from that of classic neural proteins. These findings facilitate a deeper understanding of human cortical development through two classes of proteins involved in brain development and plasticity. / Thesis / Master of Science (MSc) / The human brain develops across the lifespan. This ability of the brain to change and adapt to the environment is called plasticity and it is essential for normal brain functions, such as processing visual information. Immune proteins play important roles in the visual cortex- the brain region responsible for visual information processing. They help establish brain circuits in early development and regulate ongoing neural processes important to brain plasticity. In my thesis, I measure the expression of neuroimmune proteins to unpack their developmental patterns in the human visual cortex. I found that these proteins have fluctuating levels across development, with many displaying heightened expression levels in early childhood. Additionally, I found eight common trajectory patterns that were shared between the proteins. These findings enable a better understanding of how regulators of human brain development mature.
2

Age and Sex Influence the Expression of Viral Host Factor Genes in the Human Brain

Halabian, Negeen January 2023 (has links)
Viral infection severity often varies with host factors such as age and sex. The pathogenesis of infections caused by a broad range of viruses, from neurotropic viruses like Rabies and Zika to respiratory viruses such as Influenza and SARS-CoV-2, differ between the sexes and across the lifespan. Typically, older males are more susceptible to severe acute outcomes, while females are more vulnerable to the post-acute sequelae of infections. All of these complications can include neuroinflammation, stroke, cognitive dysfunction, and delirium. While these symptoms can be secondary to infection, recent studies suggest that even peripheral infections can lead to neuropathological changes in the brain. However, few studies have characterized the expression of viral receptors in the human brain or examined age- or sex-related differences in such expression. In this study, we used a publicly accessible transcriptomic database to assess the impact of age and sex on the expression of 67 viral host factor genes, associated with ten virus families. Analyzing data from 15 brain areas (n=33, F=14, M=19, age:4 mo-80 yrs), we determined the lifespan trajectory for each gene in each area via LOESS regressions. We used unsupervised hierarchical clustering to determine if a brain-wide pattern or virus family pattern can be detected. Using Dense-tSNE, a dimension-reduction and visualization technique, we discovered four distinct developmental trajectories, clustering the areas into two mixed-sex subcortical clusters and one each of male and female cortical clusters. Applying Differential Expression Sliding Window Analysis (DeSWAN), we identified the genes driving these age- and sex-related differences. Many sex differences were noted in childhood, potentially impacting the brain's susceptibility to viral infections and underscoring a broader dimorphic organization of male and female brains. These insights contribute to our understanding of sex-specific responses to viral infections, offering the potential for more personalized treatment strategies. / Thesis / Master of Science (MSc) / Viral infections, like Influenza and SARS-CoV-2, vary in severity based on a person's age and sex. Generally, older men suffer severe immediate symptoms such as stroke and seizures, while women endure long-term effects, including brain inflammation and cognitive issues. Recent research suggests even non-brain-related infections can lead to changes within the brain. Yet, our understanding of how our brains' viral receptors - key to infection - change with age and between sexes is limited. We used a public database to explore these changes, studying receptor-related genes in different brain areas across various ages and sexes. Our analysis revealed unique patterns of gene expression, grouping the brain into different regions based on development and sex. We noticed many differences between men and women during childhood, potentially influencing how their brains respond to viruses. This research aids our understanding of why viral infections impact individuals differently based on age and sex, offering insights that could help develop personalized treatments.
3

Functional genomics studies of human brain development and implications for autism spectrum disorder

Ziats, Mark January 2014 (has links)
Human neurodevelopment requires the coordinated expression of thousands of genes, exquisitely regulated in both spatial and temporal dimensions, to achieve the proper specialization and inter-connectivity of brain regions. Consequently, the dysregulation of complex gene networks in the developing brain is believed to underlie many neurodevelopmental disorders, such as autism spectrum disorders (ASD). Autism has a significant genetic etiology, but there are hundreds of genes implicated, and their functions are heterogeneous and complex. Therefore, an understanding of shared molecular and cellular pathways underlying the development ASD has remained elusive, hampering attempts to develop common diagnostic biomarkers or treatments for this disorder. I hypothesized that analyzing functional genomics relationships among ASD candidate genes during normal human brain development would provide insight into common cellular and molecular pathways that are affected in autistic individuals, and may help elucidate how hundreds of diverse genes can all be linked to a single clinical phenotype. This thesis describes a coordinated set of bioinformatics experiments that first (i) assessed for gene expression and co-expression properties among ASD candidates and other non-coding RNAs during normal human brain development to discover potential shared mechanisms; and then (ii) directly assessed for changes in these pathways in autistic post-mortem brain tissue. The results demonstrated that when examined in the context of normal human brain gene expression during early development, autism candidate genes appear to be strongly related to the neurodevelopmental pathways of synaptogenesis, mitochondrial function, glial cytokine signaling, and transcription/translation regulation. Furthermore, the known sex bias in ASD prevalence appeared to relate to differences in gene expression between the developing brains of males and females. Follow up studies in autistic brain tissue confirmed that changes in mitochondrial gene expression networks, glial pathways, and gene expression regulatory mechanisms are all altered in the brains of autistic individuals. Together, these results show that the heterogeneous set of autism candidate genes are related to each other through shared transcriptional networks that funnel into common molecular mechanisms, and that these mechanisms are aberrant in autistic brains.
4

The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disorders

Loeffler-Wirth, Henry, Hopp, Lydia, Schmidt, Maria, Zakharyan, Roksana, Arakelyan, Arsen, Binder, Hans 02 June 2023 (has links)
Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.

Page generated in 0.1044 seconds