• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of comparitive methods for chemical analysis and in vitro cytotoxicity testing of contaminated sites

Manglik, Aparna, Safety Science, Faculty of Science, UNSW January 2006 (has links)
This project developed methodology for in vitro toxicity assessment of contaminated sites using the Promega?? MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay performed on human cells (HepG2 and Skin fibroblasts). The project included the development of a method for extracting contaminants from soil based on leaching and centrifugation. A number of solvents and surfactants were assessed for their suitability as extracting agents. The Zwitterionic surfactant CHAPS ({3[(3-Cholamidopropyl) dimethylammonio] propanesulphonic acid}), which is an irritant in vivo, was found suitable for in vitro toxicity assessment applications. CHAPS was found to be the least toxic surfactant in vitro when tested on skin fibroblasts (NOEC: 1800??577 ppm, IC50: 4000??577 ppm) and HepG2 cells (NOEC: 833??289 ppm, IC50: 5300??287 ppm). The chosen surfactant was used in three different methods for extraction of Toluene and Xylene spiked in 2 g and 10g soil. The combination comprising of 0.1% (s/w) CHAPS and cosolvent 1% (w/w) Isopropanol, at their respective NOEC (No Observed Effective Concentration) toxicity values, showed good recovery of the nonpolar organic compounds in comparison to the recovery by 0.1% CHAPS and 0.5% CHAPS. The study found additive interactions to be the most common form of toxicity for 16 concentration combinations of Formaldehyde (polar), Toluene and Xylene (nonpolar) when compared to predicted toxicity (R2=0.943, P&lt0.0001). When assessing the in vitro toxicity of unknown (blind) contaminated soil samples, the Hazard Index (HI) predicted from the chemical analyses results showed a relatively good correlation (R2&gt0.7062, n=26) when compared to the experimental toxicity results on HepG2 cells. Furthermore, the comparison of Australian Health Investigation Levels (HIL) with in vitro toxicity testing gave similar correlation (R2&gt0.6882, n=26) on HepG2 cells. The overall project suggests the potential application of the zwitterionic surfactant (CHAPS) in sampling contaminants from soils in an in vitro toxicity assessment. This study demonstrates the application of in vitro toxicity assessment using human cells for the prediction of toxic risk as a sentinel to human toxicity from a contaminated site.
2

Development of comparitive methods for chemical analysis and in vitro cytotoxicity testing of contaminated sites

Manglik, Aparna, Safety Science, Faculty of Science, UNSW January 2006 (has links)
This project developed methodology for in vitro toxicity assessment of contaminated sites using the Promega?? MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay performed on human cells (HepG2 and Skin fibroblasts). The project included the development of a method for extracting contaminants from soil based on leaching and centrifugation. A number of solvents and surfactants were assessed for their suitability as extracting agents. The Zwitterionic surfactant CHAPS ({3[(3-Cholamidopropyl) dimethylammonio] propanesulphonic acid}), which is an irritant in vivo, was found suitable for in vitro toxicity assessment applications. CHAPS was found to be the least toxic surfactant in vitro when tested on skin fibroblasts (NOEC: 1800??577 ppm, IC50: 4000??577 ppm) and HepG2 cells (NOEC: 833??289 ppm, IC50: 5300??287 ppm). The chosen surfactant was used in three different methods for extraction of Toluene and Xylene spiked in 2 g and 10g soil. The combination comprising of 0.1% (s/w) CHAPS and cosolvent 1% (w/w) Isopropanol, at their respective NOEC (No Observed Effective Concentration) toxicity values, showed good recovery of the nonpolar organic compounds in comparison to the recovery by 0.1% CHAPS and 0.5% CHAPS. The study found additive interactions to be the most common form of toxicity for 16 concentration combinations of Formaldehyde (polar), Toluene and Xylene (nonpolar) when compared to predicted toxicity (R2=0.943, P&lt0.0001). When assessing the in vitro toxicity of unknown (blind) contaminated soil samples, the Hazard Index (HI) predicted from the chemical analyses results showed a relatively good correlation (R2&gt0.7062, n=26) when compared to the experimental toxicity results on HepG2 cells. Furthermore, the comparison of Australian Health Investigation Levels (HIL) with in vitro toxicity testing gave similar correlation (R2&gt0.6882, n=26) on HepG2 cells. The overall project suggests the potential application of the zwitterionic surfactant (CHAPS) in sampling contaminants from soils in an in vitro toxicity assessment. This study demonstrates the application of in vitro toxicity assessment using human cells for the prediction of toxic risk as a sentinel to human toxicity from a contaminated site.
3

The cytotoxic effects of aflatoxin B1 and fumonisin B1 on cultured human cells.

Van der Stok, Mary Elizabeth. January 2004 (has links)
Aflatoxin B1 (AFB1) and Fumonisin B1 (FB1), potentially cytotoxic and carcinogenic mycotoxins are common contaminants of agricultural commodities in South Africa and thus could be detrimental to the human immune system. Many of the cytotoxic effects of AFB1 require its bioactivation to an epoxide, which will bind covalently to macromolecules to form protein and DNA adducts. Fumonisin B1 is a competitive inhibitor of sphingosine and sphinganine N aceyltransferase, which are key components in the pathways for sphingolipid biosynthesis. Accumulation of free sphingoid bases, which are both cytotoxic and mitogenic, could provide a plausible explanation for the toxicity and carcinogenicity of FB1. The cytotoxic effects of AFB1 and FB1 on normal human lymphocytes, individually and in combination were assessed using the methylthiazol tetrazolium (MTT) bioassay. Two different methods of treatment were used, the treatment of isolated normal human lymphocytes for 12, 24, 48, 72 and 96 hours and whole blood treated for 12 hours. Flow cytometry and fluorescent microscopy were used to determine whether AFB1 and FB1 (5uM and 50uM), individually or in combination, were capable of inducing apoptosis, necrosis or nuclear fragmentation in isolated lymphocytes and whole blood treated for 12 hours. DNA damage was evaluated using the comet assay. The results showed that AFB1routinely induced higher levels of cytotoxicity in isolated lymphocytes than FB1. In the combination treatment, the mitogenic properties of FB1 appeared to partially counteract the cytotoxic effect exerted by AFB1. When whole blood was treated with the same concentration and ratio of toxin, FB1 was shown to be more cytotoxic than AFB1. The combination treatment of whole blood was shown to be cytotoxic in a dose dependent manner. The toxins appeared to exert a greater cytotoxic effect, when treated in combination than individually at higher concentrations. Aflatoxin B1 induced increased levels of apoptosis and necrosis in isolated lymphocytes while treatment with the FB1 resulted in increased levels of apoptosis at both concentrations. Treatment with the combination also resulted in increased levels of apoptosis. The levels of apoptosis were reduced in whole blood lymphocytes when compared to isolated lymphocytes. However, treatment with AFB1 and FB1 resulted in increased levels of apoptosis. Both AFB1 and FB1 are capable of inducing nuclear fragmentation. Treatment with FB1 (5uM and 50uM) resulted in greater degree of fragmentation than AFB1. The most nuclear fragmentation was induced by the 5uM combination treatment. The 50uM combination treatment of isolated lymphocytes induced the most DNA damage. As both toxins are common contaminants and have been known to coexist, this could be a potential area of concern for public health. / Thesis (M.Med.)-University of KwaZulu-Natal, 2004.

Page generated in 0.1251 seconds