• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of microelectrode sensor sensitivity for real-time monitoring important physiological parameters of human renal epithelial cell

Yuan, Fan 07 May 2020 (has links)
In order to calculate specific impedance of cell-covered electrodes in a Equation of morphological parameters of cell per se, an ECIS model of Human Renal Epithelial Cell are created by analysis partial differential equations describing three intrinsic pathways of electrical currents in the system. Based on this cell model, this research explores how some adjustable dimensional parameters of electrode-configuration impact sensor sensitivity by changing the overall impedance contribution of electrical double layer. Namely, it includes electrode planner area, spacing between working and counter electrode and geometry of electrode, scanning frequency. Qualitative studies on how sensor sensitivity rely on configurational parameters are conducted with these parameters involved. Moreover, theoretical analysis of sensitivity by using equivalent circuit model is also carried out. As results of COMSOL simulations, special double layer electrode configurations and selectively planted cell monolayer arrangement are proposed regardless of fabrication difficulties. Accordingly, some possible strategies to make these arrangements come true are also illustrated. Finally, superior possible COMSOL simulation model is suggested and discussed for future optimization works. / 2021-05-07T00:00:00Z

Page generated in 0.103 seconds