• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of conjugated linoleic acid on arachidonic acid metabolism and eicosanoid production in human saphenous vein endothelial cells.

Urquhart, Paula, Parkin, Susan M., Rogers, J.S., Bosley, J.A., Nicolaou, Anna January 2002 (has links)
No / The effects of a conjugated linoleic acid (CLA) mixture of single isomers (50:50, w/w, cis9,trans11:trans10,cis12) and the individual isomers on (a) the production of resting and calcium ionophore stimulated 14C-eicosanoids and (b) the incorporation of 14C-arachidonic acid (AA) into membrane phospholipids of human saphenous vein endothelial cells were investigated. The CLA mixture and the individual isomers were found to inhibit resting production of 14C-prostaglandin F2a by 50, 43 and 40%, respectively. A dose dependent inhibition of stimulated 14C-prostaglandins was observed with the CLA mixture (IC50 100 ¿M). The cis9,trans11 and trans10,cis12 (50 ¿M) isomers individually inhibited the overall production of stimulated 14C-prostaglandins (between 35 and 55% and 23 and 42%, respectively). When tested at a high concentration (100 ¿M), cis9,trans11 was found to inhibit eicosanoid production in contrast to trans10,cis12 that caused stimulation. The overall degree of 14C-AA incorporation into membrane phospholipids of the CLA (mixture and individual isomers) treated cells was found to be lower than that of control cells and the cis9,trans11 isomer was found to increase the incorporation of 14C-AA into phosphatidylcholine. Docosahexaenoic acid, eicosapentaenoic acid and linoleic acid did not alter the overall degree of incorporation of 14C-AA. The results of this study suggest that both isomers inhibit eicosanoid production, and although trans10,cis12 exhibits pro-inflammatory activity at high concentrations, the CLA mixture maintains its beneficial anti-inflammatory action that contributes to its anti-carcinogenic and anti-atherogenic properties.

Page generated in 0.1494 seconds