• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An explanation for the mysterious distribution of melanin in human skin ‐ a rare example of asymmetric (melanin) organelle distribution during mitosis of basal layer progenitor keratinocytes

Joly-Tonetti, Nicolas, Wibawa, J.I.D., Bell, M., Tobin, Desmond J. 29 June 2018 (has links)
Yes / Background: Melanin is synthesized by melanocytes in the basal layer of the epidermis. When transferred to surrounding keratinocytes it is the key UVR-protective biopolymer responsible for skin pigmentation. Most melanin is observable in the proliferative basal layer of the epidermis, and only sparsely distributed in the stratifying/differentiating epidermis. The latter has been explained, despite formal evidence, to ‘melanin degradation’ in supra-basal layers. Objectives: Our aim was to re-evaluate this currently-accepted basis for melanin distribution in the human skin epidermis, and whether this pattern is altered after a regenerative stimulus. Methods: Normal epidermis of adult human skin, at rest and after tape-stripping, was analysed by a range of (immuno)histochemical and high-resolution microscopy techniques. In vitro models of melanin granule uptake by human keratinocytes were attempted. Results: We propose a wholly different fate for melanin in the human epidermis. Our evidence indicates that the bulk of melanin is inherited only by the non-differentiating daughter cell post mitosis in progenitor keratinocytes, via asymmetric organelle inheritance. Moreover, this preferred pattern of melanin distribution can switch to a symmetric or equal daughter cell inheritance mode under conditions of stress including regeneration. Conclusions: We provide in this preliminary report a plausible and histologically-supportable explanation for how human skin pigmentation is efficiently organized in the epidermis. Steady state epidermis pigmentation may involve much less redox-sensitive melanogenesis than previously thought, and at least some pre-made melanin may be available for re-use. The epidermal-melanin unit may be an excellent example to study organelle distribution via asymmetric or symmetric inheritance in response to micro-environment and tissue demands. / Walgreens Boots Alliance
2

Distribution of Bioactive Lipid Mediators in Human Skin

Kendall, A.C., Pilkington, S.M., Massey, Karen A., Sassano, G., Rhodes, L.E., Nicolaou, Anna 03 1900 (has links)
No / The skin produces bioactive lipids that participate in physiological and pathological states, including homeostasis, induction, propagation, and resolution of inflammation. However, comprehension of the cutaneous lipid complement, and contribution to differing roles of the epidermal and dermal compartments, remains incomplete. We assessed the profiles of eicosanoids, endocannabinoids, N-acyl ethanolamides, and sphingolipids, in human dermis, epidermis, and suction blister fluid. We identified 18 prostanoids, 12 hydroxy-fatty acids, 9 endocannabinoids and N-acyl ethanolamides, and 21 non-hydroxylated ceramides and sphingoid bases, several demonstrating significantly different expression in the tissues assayed. The array of dermal and epidermal fatty acids was reflected in the lipid mediators produced, whereas similarities between lipid profiles in blister fluid and epidermis indicated a primarily epidermal origin of suction blister fluid. Supplementation with omega-3 fatty acids ex vivo showed that their action is mediated through perturbation of existing species and formation of other anti-inflammatory lipids. These findings demonstrate the diversity of lipid mediators involved in maintaining tissue homeostasis in resting skin and hint at their contribution to signaling, cross-support, and functions of different skin compartments. Profiling lipid mediators in biopsies and suction blister fluid can support studies investigating cutaneous inflammatory responses, dietary manipulation, and skin diseases lacking biomarkers and therapeutic targets.

Page generated in 0.2223 seconds