• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 14
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Planification et re-planification de mouvements sûrs pour les robots humanoïdes.

Lengagne, Sebastien 21 October 2009 (has links) (PDF)
Ces travaux de thèse traitent de la génération de mouvements optimaux pour les robots humanoïdes. La plupart des méthodes de génération de mouvements sont inspirées de celles utilisées pour les robots manipulateurs. Elles se basent sur l'utilisation d'un algorithme d'optimisation qui nécessite une paramétrisation du mouvement ainsi qu'une discrétisation temporelle des contraintes définissant les limites physiques du robot. Nous montrons qu'une discrétisation faite à partir d'une grille temporelle peut compromettre la sécurité et l'intégrité des robots. De ce fait, nous proposons une nouvelle méthode de discrétisation garantie qui calcule les extrema des contraintes sur des intervalles de temps couvrant toute la durée du mouvement. Cette méthode de discrétisation pour le calcul des contraintes, nécessite un temps de calcul important. Nous avons, donc, développé une méthode hybride qui assure la validité des contraintes pour des temps de calcul comparables à celui des méthodes classiques. Cette méthode nous permet ainsi de générer une base de données de mouvements que nous avons utilisée lors d'une expérimentation de suivi de cible mobile. Nous sommes, donc, en mesure de générer un mouvement optimal parfaitement adapté à une configuration de l'environnement. Cependant, aucune méthode ne dispose d'un temps de calcul qui permette de réagir rapidement à une modification de l'environnement. Par conséquent, nous présentons une méthode de re-planification qui permet de générer un nouveau mouvement à partir d'un mouvement optimal calculé précédemment. Pour cela, nous calculons, hors-ligne, un sous-ensemble faisable autour des paramètres du mouvement qui vérifient les limites du robot. La re-planification consiste, alors, à chercher, en ligne, dans ce sous-ensemble les paramètres qui satisfont la nouvelle configuration de l'environnement. Nous avons testé la méthode de re-planification avec un mouvement de coup de pied où la position de la balle varie et nous obtenons un mouvement adapté en 1.5 s de temps de calcul.
12

Optimal control and machine learning for humanoid and aerial robots / Contrôle optimal et apprentissage automatique pour robots humanoïdes et aériens

Geisert, Mathieu 23 April 2018 (has links)
Quelle sont les points communs entre un robot humanoïde et un quadrimoteur ? Et bien, pas grand-chose… Cette thèse est donc dédiée au développement d’algorithmes permettant de contrôler un robot de manière dynamique tout en restant générique par rapport au model du robot et à la tâche que l’on cherche à résoudre. Le contrôle optimal numérique est pour cela un bon candidat. Cependant il souffre de plusieurs difficultés comme un nombre important de paramètres à ajuster et des temps de calcul relativement élevés. Ce document présente alors plusieurs améliorations permettant d’atténuer ces difficultés. D’un côté, l’ordonnancement des différentes tâches sous la forme d’une hiérarchie et sa résolution avec un algorithme adapté permet de réduire le nombre de paramètres à ajuster. D’un autre côté, l’utilisation de l’apprentissage automatique afin d’initialiser l’algorithme d’optimisation ou de générer un modèle simplifié du robot permet de fortement diminuer les temps de calcul. / What are the common characteristics of humanoid robots and quadrotors? Well, not many… Therefore, this thesis focuses on the development of algorithms allowing to dynamically control a robot while staying generic with respect to the model of the robot and the task that needs to be solved. Numerical optimal control is good candidate to achieve such objective. However, it suffers from several difficulties such as a high number of parameters to tune and a relatively important computation time. This document presents several ameliorations allowing to reduce these problems. On one hand, the tasks can be ordered according to a hierarchy and solved with an appropriate algorithm to lower the number of parameters to tune. On the other hand, machine learning can be used to initialize the optimization solver or to generate a simplified model of the robot, and therefore can be used to decrease the computation time.
13

Jambe Humanoïde Hydraulique pour HYDROïD / HYDROïD Humanoid Hydraulic Leg

Ibrahim, Ahmed Abdellatif Hamed 18 July 2018 (has links)
Le corps humain a toujours été une source d’inspiration pour les ingénieurs et les scientifiques de tous les domaines dans le monde entier. L’un des sujets les plus intéressants de la dernière décennie a été les robots humanoïdes. Les robots humanoïdes représentent les systèmes robotiques les plus complexes. Ils offrent une plus grande mobilité dans les terrains accidentés et non structurés que les véhicules à roues normaux. À l’avenir, les robots humanoïdes devraient être employés pour une variété de tâches dangereuses dans des domaines tels que les opérations de sauvetage, l’assistance aux personnes âgées, l’éducation et le déminage humanitaire. Le travail réalisé dans cette thèse est réalisé sur le robot hydraulique humanoïde HYDROïD, un humanoïde à commande hydraulique avec 52 degrés de liberté actifs, conçu pour exécuter des tâches très dynamiques comme la marche, la course et le saut. robot puisque les actionneurs hydrauliques ont un excellent rapport poids/puissance et absorbent naturellement les pics de force d’impact lors des différentes activités. L'objectif de cette thèse est de contribuer au développement des mécanismes robotiques de la cheville et du genou avec une dynamique élevée. Un nouveau mécanisme de cheville est développé afin de pallier les inconvénients des performances réalisées avec l’ancien mécanisme de cheville d'origine. Des taux de fuite et de frottement plus faibles sont obtenus en plus d’une optimisation de pression pour les articulations de la cheville. De plus, une nouvelle solution pour optimiser le poids des actionneurs hydrauliques est appliquée sur le mécanisme du genou du robot.Une telle solution comprend l’utilisation de la technologie des matériaux composites légers pour atteindre un poids et une performance optimisés pour le joint. Afin d’appliquer des méthodologies de contrôle sur les mécanismes de la cheville et du genou, un modèle géométrique inverse pour les deux mécanismes est présenté. Le contrôle de position est utilisé pour contrôler les angles des articulations de la cheville et les mécanismes du genou. Enfin, les conclusions et les perspectives d’avenir sont présentées dans le dernier chapitre. / Human body has always been an inspiration for engineers and scientists from all fields all over the world. One of the most interesting topics in the last decade was humanoid robots. Humanoid robots represent the most complex robotic systems. They provide greater mobility in rough and unstructured terrain than the normal wheeled vehicles. In the future, humanoid robots are expected to be employed for a variety of dangerous tasks in fields like rescue operations, assisting elderly people, education and humanitarian demining. The work achieved in this dissertation is performed on the humanoid hydraulic robot HYDROïD. It is hydraulically actuated humanoid featuring 52 active degrees of freedom and is designed to perform highly dynamic tasks like walking, running and jumping. Hydraulic power was chosen for this robot since hydraulic actuators have an excellent power to weight ratio and naturally absorb impact force peaks during different activities. The objective of this dissertation is to contribute toward the development of ahighly dynamic robotic ankle and knee mechanisms. A new ankle mechanism islooked for in order to tackle the drawbacks raised by the performances achievedwith the original old ankle mechanism. Lower leakage and friction rates areachieved in addition to a pressure optimization for the ankle joints. Moreover, anew solution for optimizing the weight of hydraulic actuators is applied on theknee mechanism of the robot. Such solution includes the usage of light compositematerial technology to achieve optimized weight and performance for the joint.In order to apply control methodologies on the ankle and knee mechanisms,inverse geometrical model for the both mechanism are presented. Position controlis used to control the joints angles of the ankle and the knee mechanisms. Finally,the conclusions and the future perspectives are presented in the last chapter.
14

Développement mécatronique et contrôle de l'exosquelette des membres inférieurs SOL0.1 / Mechatronic Development and Control of Lower Limb Exoskeleton SOL0.1

Fouz, Moustafa 28 June 2019 (has links)
Le sujet de thèse concerne le développement de l'architecture de contrôle et la génération de trajectoire pour un exosquelette évolutif appelé SOL. Les résultats de l'étude biomédicale ont révélé que la progressivité de la maladie pouvait être résolue par une réadaptation précoce et continue tout au long de la croissance. Ainsi, l'importance de l'utilisation d'un exosquelette a un impact positif puisqu'il sert à la fois à la locomotion et à la réhabilitation. Cependant, les exosquelettes actuels ne peuvent pas être adaptés au changement continu de la biomécanique de l'adolescent tout au long de sa croissance. Par conséquent, le besoin de développer un exosquelette évolutif capable de faire face aux besoins croissants est un sujet interdisciplinaire. L'architecture de contrôle d'un tel dispositif évolutif a été abordée dans cette thèse, à la fois dans les développements matériels et logiciels pour incorporer autant que possible la fonctionnalité d'évolutivité. Les étapes initiales ont été franchies en vue d'atteindre l'objectif d'un exosquelette évolutif, en contribuant à la fois aux développements matériels qui permettent d'apporter d'autres améliorations tout au long de l'avancement du projet, et aux développements du firmware, qui ont répondu aux besoins en matière d'évolutivité au niveau du contrôle.L'extensibilité a également été abordée aux trois niveaux hiérarchiques de contrôle. Plus spécifiquement, une attention particulière a été accordée à la génération des trajectoires de référence de la marche pour une population en croissance. Enfin, grâce à la connaissance de la biomécanique du sujet, le contrôleur développé est capable d’identifier les trajectoires appropriées et injecter les trajectoires de référence des actionneurs de l’exosquelette SOL.Un premier prototype de l'exosquelette est utilisé pour manifester les résultats du générateur de marche évolutionnaire (E.G.G.) proposé. Comme premier prototype, un mouvement de marche libre dans l'air est testé, où la validation du matériel proposé et des boucles de contrôle sont démontrées. L'étude des réponses de contrôle des exosquelettes contre les perturbations externes probables et des scénarios de sécurité en cas de défaillance est encore un travail futur obligatoire avant de réaliser les premiers tests sur l'exosquelette humain. / The thesis' subject concerns the development of the control architecture and the trajectory generation for a scalable exoskeleton called SOL. The biomedical study outcomes revealed that the progressiveness of the disease could be solved by early and continuous rehabilitation throughout the growth. Thus, the importance of using an exoskeleton has a positive impact since it is used to provide locomotion and rehabilitation, at the same time. However, the current exoskeletons cannot be adapted to fit the continuous change of teenager biomechanics throughout his growth. Hence, the need for developing a scalable exoskeleton that can cope with the growing needs is still a challenging topic. Especially, the control architecture of such a scalable device was tackled in this thesis, in both hardware and software developments to incorporate the scalability features. Initiative steps have been passed towards the goal of achieving a scalable exoskeleton, by contributing in hardware developments that allowing further enhancements to be included throughout the advancement of the project. Firmware developments achieved have addressed the scalability needs in terms of control by considering the three hierarchical levels (which are: High, Middle, and low-levels of control). More specifically, a focus was dedicated to the generation of the gait reference trajectories for the growing population. Data were collected from healthy subjects wearing a passive exoskeleton to extract the proper joint trajectories, then, the data were processed to build a gait library to be deployed on the exoskeleton controller. Finally, by knowledge of the subject biomechanics, the controller is able to fetch the proper trajectories and inject the reference trajectories to the SOL's actuators. A first prototype of the exoskeleton is used to manifest the outcomes of the proposed Evolutionary Gait Generator (E.G.G.). As a first prototype, A free walking in air motion is tested, where the validation of the proposed hardware and control loops are demonstrated. Studying the exoskeletons' control responses against probable external disturbances and fail-safe scenarios are still future work mandatory before achieving first human-exoskeleton testing.

Page generated in 0.0417 seconds