• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Dual-SLIP Model For Dynamic Walking In A Humanoid Over Uneven Terrain

Liu, Yiping January 2015 (has links)
No description available.
2

Sinteza i realizacija dvonožnog hoda putem primitiva / Synthesis and realization of biped walk using primitives

Raković Mirko 11 October 2013 (has links)
<p>U tezi je prikazan novi metod za sintezu i realizaciju dvonožnog<br />veštačkog hoda koji se zasniva na upotrebi jednostavnih pokreta čijim<br />je kombinovanjem moguće realizovati kompleksne pokrete kao što je<br />hod, a čiji se parametri mogu menjati tokom kretanja. Time je omogućeno<br />da se na osnovu informacija o nameravanom kretanju i stanja okoline<br />izvrši sinteza kretanja izborom i kombinacijom jednostavnih<br />bazičnih pokreta koje se nazivaju primitivi. Takođe je omogućeno da se,<br />tokom izvršavanja hoda bez njegovog prekida, menjaju parametri<br />kretanja kao što su brzina hoda, dužina koraka, pravac kretanja i<br />visina podizanja noge tokom prenosne faze. Potvrda je data kroz<br />eksperimentalne rezultate koji su sprovedeni simulacijom na<br />dinamičkom modelu humanoidnog robota.</p> / <p>This dissertation presents new method for the synthesis and realization of<br />biped artificial walk based on the use of simple movements that can be<br />combined in order to achieve complex movements such as walk, whereas it<br />is possible to change the motion parameters at any time. It means that,<br />based on the information about intended movement and current state of the<br />environment, it is possible to synthesize motion by selecting and tying simple<br />movements, i.e. motion primitives. It also enables the robot to change<br />walking parameters online such as walking speed, direction of walk, foot<br />length during swing phase and step length. Proof of this method is given by<br />experimental results obtained during the simulation on a dynamic model of<br />humanoid robot.</p>
3

Balance preservation and task prioritization in whole body motion control of humanoid robots / Préservation de l'équilibre et priorisation des tâches dans la commande du mouvement corps entier de robots humanoïdes

Sherikov, Alexander 23 May 2016 (has links)
Un des plus grands défis dans la commande des robots est de combler l'écart entre la capacité de mouvement de l'humain et des robots humanoïdes. La difficulté réside dans la complexité des systèmes dynamiques représentant les robots humanoïdes: la non linéarité, le sous-actionnement, le comportement non-lisse en raison de collisions et de frottement, le nombre élevé de degrés de liberté. De plus, les robots humanoïdes sont censés opérer dans des environnements non-déterministes, qui exigent une commande temps réel avancée.L'approche qui prévaut actuellement pour faire face à ces difficultés est d'imposer diverses restrictions sur les mouvements et d'employer des modèles approximatifs des robots. Dans cette thèse, nous suivons la même ligne de recherche et proposons une nouvelle approche pour la conception de contrôleurs corps entier qui préservent l'équilibre. L'idée principale est de tirer parti des avantages des modèles approximatifs et de corps entier en les mélangeant dans un seul problème de contrôle prédictif avec des objectifs strictement hiérarchisés.La préservation de l'équilibre est l'une des principales préoccupations dans la commande des robots humanoïdes. Des recherches antérieures ont déjà établi que l'anticipation des mouvements est essentiel à cet effet. Nous préconisons que l'anticipation est utile dans ce sens comme un moyen de maintenir la capturabilité du mouvement, i.e., la capacité de s'arrêter. Nous soulignons que capturabilité des mouvements prévus peut être imposée avec des contraintes appropriées. Dans la pratique, il est fréquent d'anticiper les mouvements du robot à l'aide de modèles approximatifs afin de réduire l'effort de calcul, par conséquent, un contrôleur séparé de mouvement du corps entier est nécessaire pour le suivi. Au lieu de cela, nous proposons d'introduire l'anticipation avec un modèle approximatif directement dans le contrôleur corps entier. En conséquence, les mouvements du corps entier générés respectent les contraintes de capturabilité et les mouvements anticipes du modèle approximatif prennent en compte les contraintes et les tâches désirées pour le corps entier. Nous posons nos contrôleurs du mouvement du corps entier comme des problèmes d'optimisation avec des objectifs strictement hiérarchisés. Bien que cet ordre de priorité soit commun dans la littérature, nous croyons qu'il est souvent mal exploité.Par conséquent, nous proposons plusieurs exemples de contrôleurs, où la hiérarchisation est utile et nécessaire pour atteindre les comportements souhaités. Nous évaluons nos contrôleurs dans deux scénarios simulés, où la tâche du corps entier du robot influence la marche et le robot exploite éventuellement un contact avec la main pour maintenir son équilibre en étant debout. / One of the greatest challenges in robot control is closing the gap between themotion capabilities of humans and humanoid robots. The difficulty lies in thecomplexity of the dynamical systems representing the said robots: theirnonlinearity, underactuation, discrete behavior due to collisions and friction,high number of degrees of freedom. Moreover, humanoid robots are supposed tooperate in non-deterministic environments, which require advanced real timecontrol. The currently prevailing approach to coping with these difficulties isto impose various limitations on the motions and employ approximate models ofthe robots. In this thesis, we follow the same line of research and propose anew approach to the design of balance preserving whole body motion controllers.The key idea is to leverage the advantages of whole body and approximate modelsby mixing them within a single predictive control problem with strictlyprioritized objectives.Balance preservation is one of the primary concerns in the control of humanoidrobots. Previous research has already established that anticipation of motionsis crucial for this purpose. We advocate that anticipation is helpful in thissense as a way to maintain capturability of the motion, i.e., the ability tostop. We stress that capturability of anticipated motions can be enforced withappropriate constraints. In practice, it is common to anticipate motions usingapproximate models in order to reduce computational effort, hence, a separatewhole body motion controller is needed for tracking. Instead, we propose tointroduce anticipation with an approximate model into the whole body motioncontroller. As a result, the generated whole body motions respect thecapturability constraints and the anticipated motions of an approximate modeltake into account whole body constraints and tasks. We pose our whole bodymotion controllers as optimization problems with strictly prioritizedobjectives. Though such prioritization is common in the literature, we believethat it is often not properly exploited. We, therefore, propose severalexamples of controllers, where prioritization is useful and necessary toachieve desired behaviors. We evaluate our controllers in two simulatedscenarios, where a whole body task influences walking motions of the robot andthe robot optionally exploits a hand contact to maintain balance whilestanding.
4

Advanced human inspired walking strategies for humanoid robots / Stratégie de marche avancée et inspirée de l'être humain pour les robots humanoïdes

Naveau, Maximilien 28 September 2016 (has links)
Cette thèse traite du problème de la locomotion des robots humanoïdes dans le contexte du projet européen KoroiBot. En s'inspirant de l'être humain, l'objectif de ce projet est l'amélioration des capacités des robots humanoïdes à se mouvoir de façon dynamique et polyvalente. Le coeur de l'approche scientifique repose sur l'utilisation du controle optimal, à la fois pour l'identification des couts optimisés par l'être humain et pour leur mise en oeuvre sur les robots des partenaires roboticiens. Cette thèse s'illustre donc par une collaboration à la fois avec des mathématiciens du contrôle et des spécialistes de la modélisation des primitives motrices. Les contributions majeures de cette thèse reposent donc sur la conception de nouveaux algorithmes temps-réel de contrôle pour la locomotion des robots humanoïdes avec nos collégues de l'université d'Heidelberg et leur intégration sur le robot HRP-2. Deux contrôleurs seront présentés, le premier permettant la locomotion multi-contacts avec une connaissance a priori des futures positions des contacts. Le deuxième étant une extension d'un travail réalisé sur de la marche sur sol plat améliorant les performances et ajoutant des fonctionnalitées au précédent algorithme. En collaborant avec des spécialistes du mouvement humain nous avons implementé un contrôleur innovant permettant de suivre des trajectoires cycliques du centre de masse. Nous présenterons aussi un contrôleur corps-complet utilisant, pour le haut du corps, des primitives de mouvements extraites du mouvement humain et pour le bas du corps, un générateur de marche. Les résultats de cette thèse ont été intégrés dans la suite logicielle "Stack-of-Tasks" du LAAS-CNRS. / This thesis covers the topic of humanoid robot locomotion in the frame of the European project KoroiBot. The goal of this project is to enhance the ability of humanoid robots to walk in a dynamic and versatile fashion as humans do. Research and innovation studies in KoroiBot rely on optimal control methods both for the identification of cost functions used by human being and for their implementations on robots owned by roboticist partners. Hence, this thesis includes fruitful collaborations with both control mathematicians and experts in motion primitive modeling. The main contributions of this PhD thesis lies in the design of new real time controllers for humanoid robot locomotion with our partners from the University of Heidelberg and their integration on the HRP-2 robot. Two controllers will be shown, one allowing multi-contact locomotion with a prior knowledge of the future contacts. And the second is an extension of a previous work improving performance and providing additional functionalities. In a collaboration with experts in human motion we designed an innovating controller for tracking cyclic trajectories of the center of mass. We also show a whole body controller using upper body movement primitives extracted from human behavior and lower body movement computed by a walking pattern generator. The results of this thesis have been integrated into the LAAS-CNRS "Stack-of-Tasks" software suit.
5

Design of Feedback Controllers for Biped Robots Based in Reinforcement Learning and Hybrid Zero Dynamics

Castillo Martinez, Guillermo Andres 29 July 2019 (has links)
No description available.

Page generated in 0.0841 seconds