Spelling suggestions: "subject:"humidity link"" "subject:"humidity sink""
1 |
Bioinspired Anti-Icing Coatings and Spatial Control of Nucleation using Engineered Integral Humidity Sink EffectJanuary 2017 (has links)
abstract: Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one of these conditions. The bi-layer coating also delays condensation on the exterior surface at least ten times longer than identical system without antifreeze.
It is demonstrated that the significant delay in condensation onset is due to the integral humidity sink effect posed by the hygroscopic antifreeze liquid infused in the porous structure. This effect significantly alters the water vapor concentration field at the coating surface, which delays nucleation of drops and ice. It was demonstrated that with a proper design of the environmental chamber the size of the region of inhibited condensation and condensation frosting around an isolated pore, as well as periodically spaced pores, filled by propylene glycol can be quantitatively predicted from quasi-steady state water vapor concentration field. Theoretical analysis and experiments revealed that the inhibition of nucleation is governed by only two non-dimensional geometrical parameters: the pore size relative to the unit cell size and the ratio of the unit cell size to the thickness of the boundary layer. It is demonstrated that by switching the size of the pores from millimeters to nanometers, a dramatic depression of the nucleation onset temperature, as well as significantly greater delay in nucleation onset can be achieved. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2017
|
Page generated in 0.0366 seconds