• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mutant huntingtin reduces palmitoylation of GAD65 and impairs its vesicular trafficking

Unknown Date (has links)
Huntington's disease (HD) is caused by an expanded plyglutamine repeat in the huntingtin protein. In this study, I focused on the effect of the mutant huntingtin protein (mhtt) on the subcellular localization of glutamic acid decarboxylase (GAD), the enzyme responsible for synthesizing gama-aminobutyric acid (GABA). Subcellular distribution of GAD65 is significantly altered in two neuronal cell lines that express either the N-terminus or full length mhtt. GAD65 is predominantly associated with the Golgi membrane in cells expressing normal huntingtin (Htt). However, it diffuses in the cytosol of cells expressing mhtt. Palmitoylation of GAD65 is required for GAD65 trafficking, and I demonstrated the palmitoylation of GAD65 is reduced in the HD model. Overexpression of huntingtin-interacting protein 14 (HIP14), the enzyme that palmitoylates GAD65, rescues GAD65 palmitoylation and vesicle-associated trafficking. This data suggests that impairment of GAD65 palmitoylation by mhtt may alter its localization and lead to altered inhibitory neurotransmission in HD. / by Daniel Rush. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
2

Development and degeneration of the sensory control of reach-to-eat behaviour

Sacrey, Lori-Ann Rosalind January 2012 (has links)
The reach-to-eat movement, in which a hand is advanced towards a food item, shapes to grasp the food item, and withdrawals to place the food item into the mouth for eating, is a behaviour that is performed daily. The movement is controlled by two sensory systems, vision to guide hand advance and grasping, and somatosensation to guide hand withdrawal and mouth placement. The purpose of the present thesis was to examine how the sensory control of reaching-to-eat develops in infancy and degenerates following neurodegenerative disorder. The tight coupling of vision to hand advance and somatosensation to hand withdrawal has a developmental profile from six months to one year of age. That is, six-month-old infants rely on vision to advance their hand, grasp the target, and withdrawal the target to the mouth. By twelve months of age, infants display the adult pattern of coupling vision to hand advance and grasping. The tight coupling of vision to hand advance degenerates with basal ganglia disease, such that subjects with Parkinson’s disease and Huntington’s disease show an overreliance on vision to guide hand advance for grasping and hand withdrawal for mouth placement. The results of the thesis demonstrate that efficient use of sensory control to guide motor behaviour is an important aspect of development that is disrupted by neurodegenerative disease. / xiv, 286 leaves : ill. ; 29 cm
3

NEURAL CORRELATES AND PROGRESSION OF SACCADE IMPAIRMENT IN PREMANIFEST AND MANIFEST HUNTINGTON DISEASE

Rupp, Jason Douglas 15 October 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Huntington disease (HD) is an autosomal dominant disorder characterized by progressive decline of motor, cognitive, and behavioral function. Saccades (rapid, gaze-shifting eye movements) are affected before a clinical diagnosis of HD is certain (i.e. during the premanifest period of the disease). Fundamental questions remain regarding the neural substrates of abnormal saccades and the course of premanifest disease. This work addressed these questions using magnetic resonance imaging (MRI) and a longitudinal study of premanifest disease progression. Gray matter atrophy is a characteristic of HD that can be reliably detected during the premanifest period, but it is not known how such changes influence saccadic behavior. We evaluated antisaccades (AS) and memory guided saccades (MG) in premanifest and manifest HD, then tested for associations between impaired saccadic measures and gray matter atrophy in brain regions involved in these saccadic tasks. The results suggest that slowed vertical AS responses indicate cortical and subcortical atrophy and may be a noninvasive marker of atrophic changes in the brain. We also investigated the brain changes that underlie AS impairment using an event-related AS design with functional MRI (fMRI). We found that, in premanifest and manifest HD, blood oxygenation level dependent (BOLD) response was abnormally absent in the pre-supplementary motor area and dorsal anterior cingulate cortex following incorrect AS responses. These results are the first to suggest that abnormalities in an error-related response network underlie early disease-related saccadic changes, and they emphasize the important influence of regions outside the striatum and frontal cortex in disease manifestations. Though saccadic abnormalities have been repeatedly observed cross sectionally, they have not yet been studied longitudinally in premanifest HD. We found different patterns of decline; for some measures the rate of decline increased as individuals approached onset, while for others the rate was constant throughout the premanifest period. These results establish the effectiveness of saccadic measures in tracking premanifest disease progression, and argue for their use in clinical trials. Together, these studies establish the utility of saccade measures as a marker of HD neurodegeneration and suggest that they would be a valuable component of batteries evaluating the efficacy of neuroprotective therapies.

Page generated in 0.0926 seconds