• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Hurricane Fault Architecture on Groundwater Flow in the Timpoweap Canyon of Southwestern, Utah

Dutson, Sarah J 11 July 2005 (has links) (PDF)
Hydrogeologically important features of fault zones include undamaged country rock, the damage zone, and the core zone. Fault cores generally have low porosity and permeability, and often act as a barrier to groundwater flow. The damage zone, by contrast, consists of small faults and fracture networks, which can act as conduits. Timpoweap Canyon near Hurricane, Utah has superb exposures of the fault core and damage zone of the Hurricane Fault. Also within the canyon, springs discharge from the damage zone into the Virgin River, providing an ideal natural laboratory for the study of groundwater discharge from a fault zone. The Hurricane fault is an active, steeply dipping, normal fault that is 250 km long, and exhibits about 2500 m of displacement. The damage zone in Timpoweap Canyon controls thermal groundwater (~40°C) and CO2 gas discharge from highly fractured limestone. Total spring discharge is 260 L/s. Approximately 4 L/s of CO2 gas also discharges with the springs. The δ^2H and δ^16O composition of the springs exhibits a geothermal shift from the global meteoric waterline. This suggests that the circulation depth is about 3 km below the ground surface (bgs) in basement bedrock. The CO2 gas discharging originates from either magmatic sources or from diagenesis. The fracture density in a typical damage zone decreases with increasing distance from the fault, thus spring discharge should also decrease with increasing distance from the fault. The damage zone in Timpoweap Canyon does not follow this pattern because pre-existing fractures that developed from Laramide and Sevier Orogeny stresses suppress the pattern. Collapse structures from gypsum dissolution and large fractures also control the location of spring discharge.
2

Spatio-temporal History of Fluid-rock Interaction in the Hurricane Fault Zone

Koger, Jace 01 May 2017 (has links)
The Hurricane Fault is a 250-km long, west dipping, Basin and Range-bounding normal fault in SW Utah and NW Arizona that initiated in the mid-Miocene to Pliocene. It has been primarily active in the Quaternary, with slip rates of 0.2 – 0.6 mm/yr. There are multiple hot springs along its 250-km length and multiple late Tertiary-Quaternary basaltic centers broadly parallel the fault. Possible sources of hot spring fluids include deeply-circulated meteoric water that experienced water-rock exchange at high temperatures (>100 °C) and deep-seated crustal fluids. Aside from the source of modern hot spring fluids and heat, questions about the spatio-temporal history of fluid flow along the Hurricane Fault remain unaddressed. Abundant damage zone veins, cements, and host rock alteration are present, indicative of past fluid flow. Carbonate veining and cementation is a key feature of the Hurricane Fault zone, and is the primary feature exploited to characterize the thermochemical history of fault-related paleofluids. A combination of macroscopic and microscopic carbonate observations, chemical composition, and precipitation temperature of calcite veins was used to determine past water-rock diagenetic interaction and vein evolution in the Hurricane Fault zone. Calcite iv in concretions and veins from the damage zone of the fault shows a wide range of carbon and oxygen stable isotope ratios, with δ13CPDB from -4.5 to 3.8 ‰ and δ18OPDB from -17.7 to -1.1‰. Fluid inclusion microthermometry homogenization temperatures range from 45 to 160 °C, with fluid salinities of 0 to 15 wt% NaCl calculated from melting temperatures. Combining the two datasets, two main fluids that interacted with the fault zone are inferred: (1) basin brines with a δ 18OSMOW of 9.2 ‰ and (2) altered meteoric fluids with a δ 18OSMOW of -11.9 to -8.3 ‰. Calculated dissolved CO2 δ 13CPDB (-8.5 to -1.3 ‰) indicates mixed marine carbonate and organic or magmatic sources. Fault zone diagenesis was caused by meteoric water infiltration and interaction with carbonate-rich rocks, mixed with upwelling basin brines. Fluid-rock interaction is concentrated in the damage zone, where fracture-related permeability was utilized for fluid flow. A distinct mineralization event punctuated this history, associated with basin brines that were chemically influenced by nearby basaltic magmatism. This implies a hydrologic connection between the fault and regional magmatism.
3

Hot Springs Inflow Controlled by the Damage Zone of a Major Normal Fault

Godwin, Steven Benjamin 01 April 2019 (has links)
Spring water inflow is distinct at Pah Tempe Hot Springs (also known as Dixie Hot Springs) situated within the damage zone of the Hurricane Fault in Timpoweap Canyon in Hurricane, Utah. Excising of the footwall by the Virgin River has created Timpoweap Canyon and allowed an unusual opportunity to study the spring inflow in relation to the fault damage zone. While correlation of these springs with the damage zone and visible fracture patterns on the canyon wall has been made, no subsurface faulting has been imaged to verify connection to these visible fractures and spring inflows (Nelson et al., 2009). The stream was logged and contoured to note the varying locations of spring water inflows in contrast with unsaturated Virgin River water. Seismic surveys were conducted and subsurface profiles made to locate offsets and faults. Photogrammetry was conducted and a three-dimensional model of the canyon and cliff wall was created to facilitate remote fracture mapping of this wallSubsurface features correlate to fractures, spring water inflow locations, and surface faults mapped by Biek (2002). This suggests that faulting and fracturing from the Hurricane Fault provides subsurface conduits for these thermal waters to rise. In one area in the stream, thermal inflow correlates with both subsurface offsets and major surface fractures. Numerous correlations between just spring water entry and subsurface offsets or surface fractures are also found. Fracture and fault density is atypical at Pah Tempe as these features do not diminish with distance from the main strand of the fault. This has led to the Sevier Orogeny accounting for creating the observed fracture conduits at Pah Tempe. Fractures in the canyon wall at Pah Tempe open west to east. This is indicative of the maximum horizontal compressive stress of southern Utah being north to south (Zoback and Zoback, 2015). Therefore the spring inflow at Pah Tempe is likely a result of the damage from the Hurricane Fault creating conduits for spring water to rise, rather than the Sevier Orogeny.

Page generated in 0.057 seconds