• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strategies of Balancing: Regulation of Posture as a Complex Phenomenon

Hilbun, Allison Leich 01 May 2016 (has links)
The complexity of the interface between the muscular system and the nervous system is still elusive. We investigated how the neuromuscular system functions and how it is influenced by various perturbations. Postural stability was selected as the model system, because this system provides complex output, which could indicate underlying mechanisms and feedback loops of the neuromuscular system. We hypothesized that aging, physical pain, and mental and physical perturbations affect balancing strategy, and based on these observations, we constructed a model that simulates many aspects of the neuromuscular system. Our results show that aging changes the control strategy of balancing from more chaotic to more repetitive. The chaotic elements ensure quick reactions and strong capacity to compensate for the perturbations; this adeptly reactive state changes into a less reactive, slower, probably less mechanically costly balancing strategy. Mental tasks during balancing also decreased the chaotic elements in balancing strategy, especially if the subject experienced chronic pain. Additional motoric tasks, such as tying knots while balancing, were correlated with age but unaffected by chronic pain. Our model competently predicted the experimental findings, and we proceeded to use the model with an external data set from Physionet to predict the balancing strategy of Parkinson’s patients. Our neurological model, comprised of RLC circuits, provides a mechanistic explanation for the neuromuscular system adaptations.
2

Electromagnetic radiation and Radon-222 gas emissions as precursors of seismic activity

Petraki, Ermioni January 2016 (has links)
Earthquakes are amongst the most destructive of natural phenomena and have been the subject of significant research effort over many decades, to predict the onset of seismic events. Electromagnetic emissions detected prior to earthquakes provide a potential data source for seismic predictions and research suggests that specific pre-seismic electromagnetic activity can be directly related to specific earthquakes although it is still an open issue as to the precise links between these electromagnetic emissions and subsequent earthquakes. In this research, findings of the long memory or the self-organization of several pre-earthquake MHz electromagnetic time-series provide significant outcomes regarding the earthquake prediction. It is also recognised that enhanced radon gas emission has an equally long history as being associated with seismic activity. In general, several anomalous soil radon emissions have been observed prior to earthquakes and this has been recorded all over the world. The abnormal soil radon exhalation from the interior of the earth has been associated with earthquakes and is considered as an important field of research. The research reported in this thesis compared and contrasted the merits of combining electromagnetic emission data and radon exhalation data as precursors of earthquakes with the aim of enhancing earthquake prediction methodology. The findings from the long-memory analysis of radon disturbances in the soil indicated a very significant issue: the radon disturbances in the soil prior to earthquakes exhibit similar behaviour as the MHz RF disturbances of general failure. So, the radon precursors and the MHz electromagnetic correspond to the same pre-earthquake phase. Geological explanations were proposed in view of the asperity model. Persistent and anti-persistent MHz anomalies were due to the micro-cracking of the heterogeneous medium of the earth's crust which may have led the system's evolution towards the global failure. Fractal methods have been used on historical data, to investigate MHz electromagnetic time-series spectra on emissions preceding major earthquakes over the period 2007 to 2014 and the characteristics of enhanced radon emissions have been studied over the period 2008 to 2015 for seismic events occurring in the Aegean Region. It has been found that both the electromagnetic emissions and the radon exhalation data exhibit similar fractal behaviour and are associated with impending seismic activity. Hence both phenomena are relevant to earthquake predictions and should both be employed in any systematic approach to this problem as the varying geological and geographic conditions under which earthquakes can occur, might preclude one or other data from being measurable. According to the several techniques applied in this thesis, all should be employed in sequential steps, albeit the power-law spectral fractal analysis is the most significant to trace long-memory patterns of 1/f processes as those of the processes of earthquakes.

Page generated in 0.0624 seconds