• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Safety Verification of Material Handling Systems Driven by Programmable Logic Controller : Consideration of Physical Behavior of Plants

OKUMA, Shigeru, SUZUKI, Tatsuya, KONAKA, Eiji 01 April 2004 (has links)
No description available.
2

Exploring the Nonlinear Dynamics of Tapping Mode Atomic Force Microscopy with Capillary Layer Interactions

Hashemi, Nastaran 22 July 2008 (has links)
Central to tapping mode atomic force microscopy is an oscillating cantilever whose tip interacts with a sample surface. The tip-surface interactions are strongly nonlinear, rapidly changing, and hysteretic. We explore numerically a lumped-mass model that includes attractive, adhesive, and repulsive contributions as well as the interaction of the capillary fluid layers that cover both tip and sample in the ambient conditions common in experiment. To accomplish this, we have developed and used numerical techniques specifically tailored for discontinuous, nonlinear, and hysteretic dynamical systems. In particular, we use forward-time simulation with event handling and the numerical pseudo-arclength continuation of periodic solutions. We first use these numerical approaches to explore the nonlinear dynamics of the cantilever. We find the coexistence of three steady state oscillating solutions: (i) periodic with low-amplitude, (ii) periodic with high-amplitude, and (iii) high-periodic or irregular behavior. Furthermore, the branches of periodic solutions are found to end precisely where the cantilever comes into grazing contact with event surfaces in state space corresponding to the onset of capillary interactions and the onset of repulsive forces associated with surface contact. Also, the branches of periodic solutions are found to be separated by windows of irregular dynamics. These windows coexist with the periodic branches of solutions and exist beyond the termination of the periodic solution. We also explore the power dissipated through the interaction of the capillary fluid layers. The source of this dissipation is the hysteresis in the conservative capillary force interaction. We relate the power dissipation with the fraction of oscillations that break the fluid meniscus. Using forward-time simulation with event handling, this is done exactly and we explore the dissipated power over a range of experimentally relevant conditions. It is found that the dissipated power as a function of the equilibrium cantilever-surface separation has a characteristic shape that we directly relate to the cantilever dynamics. We also find that despite the highly irregular cantilever dynamics, the fraction of oscillations breaking the meniscus behaves in a fairly simple manner. We have also performed a large number of forward-time simulations over a wide range of initial conditions to approximate the basins of attraction of steady oscillating solutions. Overall, the simulations show a complex pattern of high and low amplitude periodic solutions over the range of initial conditions explored. We find that for large equilibrium separations, the basin of attraction is dominated by the low-amplitude periodic solution and for the small equilibrium separations by the high-amplitude periodic solution. / Ph. D.
3

Hybrid Solutions for Mechatronics. Applications to modeling and controller design.

Bertollo, Riccardo 10 March 2023 (has links)
The task of modeling and controlling the evolution of dynamical sys- tems is one of the main objectives in mechatronics engineering. When approaching the problem of controlling physical or digital systems, the dynamical models have been historically divided into continuous-time, described by differential equations, and discrete-time, described by difference equations. In the last decade, a new class of models, known as hybrid dynamical systems, has gained popularity in the control community because of its high versatility. This framework combines continuous-time and discrete- time evolution, thus allowing for both the description of a broader class of systems and the achievement of better-performing controllers, compared to the traditional continuous-time alternatives. After the first rigorous introduction of the framework, several Lyapunov-based results were published in the literature, and numerous application areas were shown to benefit from the introduction of a hybrid dynamics, like systems involving impacts or physical systems connected to digital controllers (cyber-physical systems). In this thesis, we use the hybrid framework to study different mechatronics-inspired control problems. The applications we consider are diverse, so we split the presentation into three parts. In the first part we further analyze a particular hybrid control strategy, known as reset control, providing some new theoretical guarantees, together with an application to adaptive control. In the second part we consider two applications of the hybrid framework to the network dynamics field, specifically we analyze the problems of distributed state estimation and of uniform synchronization of nonlinear oscillators. In the third part, we use a hybrid approach to study two applications where this framework has been rarely employed, or not at all, namely smart agriculture and trajectory tracking for a bipedal walking robot. We study these application-inspired problems from a theoretical point of view, giving robust Lyapunov-based stability guarantees. We complement the theoretical analysis with numerical results, obtained from simulations or from experiments.
4

Approximate dynamic programming with adaptive critics and the algebraic perceptron as a fast neural network related to support vector machines

Hanselmann, Thomas January 2003 (has links)
[Truncated abstract. Please see the pdf version for the complete text. Also, formulae and special characters can only be approximated here. Please see the pdf version of this abstract for an accurate reproduction.] This thesis treats two aspects of intelligent control: The first part is about long-term optimization by approximating dynamic programming and in the second part a specific class of a fast neural network, related to support vector machines (SVMs), is considered. The first part relates to approximate dynamic programming, especially in the framework of adaptive critic designs (ACDs). Dynamic programming can be used to find an optimal decision or control policy over a long-term period. However, in practice it is difficult, and often impossible, to calculate a dynamic programming solution, due to the 'curse of dimensionality'. The adaptive critic design framework addresses this issue and tries to find a good solution by approximating the dynamic programming process for a stationary environment. In an adaptive critic design there are three modules, the plant or environment to be controlled, a critic to estimate the long-term cost and an action or controller module to produce the decision or control strategy. Even though there have been many publications on the subject over the past two decades, there are some points that have had less attention. While most of the publications address the training of the critic, one of the points that has not received systematic attention is training of the action module.¹ Normally, training starts with an arbitrary, hopefully stable, decision policy and its long-term cost is then estimated by the critic. Often the critic is a neural network that has to be trained, using a temporal difference and Bellman's principle of optimality. Once the critic network has converged, a policy improvement step is carried out by gradient descent to adjust the parameters of the controller network. Then the critic is retrained again to give the new long-term cost estimate. However, it would be preferable to focus more on extremal policies earlier in the training. Therefore, the Calculus of Variations is investigated to discard the idea of using the Euler equations to train the actor. However, an adaptive critic formulation for a continuous plant with a short-term cost as an integral cost density is made and the chain rule is applied to calculate the total derivative of the short-term cost with respect to the actor weights. This is different from the discrete systems, usually used in adaptive critics, which are used in conjunction with total ordered derivatives. This idea is then extended to second order derivatives such that Newton's method can be applied to speed up convergence. Based on this, an almost concurrent actor and critic training was proposed. The equations are developed for any non-linear system and short-term cost density function and these were tested on a linear quadratic regulator (LQR) setup. With this approach the solution to the actor and critic weights can be achieved in only a few actor-critic training cycles. Some other, more minor issues, in the adaptive critic framework are investigated, such as the influence of the discounting factor in the Bellman equation on total ordered derivatives, the target interpretation in backpropagation through time as moving and fixed targets, the relation between simultaneous recurrent networks and dynamic programming is stated and a reinterpretation of the recurrent generalized multilayer perceptron (GMLP) as a recurrent generalized finite impulse MLP (GFIR-MLP) is made. Another subject in this area that is investigated, is that of a hybrid dynamical system, characterized as a continuous plant and a set of basic feedback controllers, which are used to control the plant by finding a switching sequence to select one basic controller at a time. The special but important case is considered when the plant is linear but with some uncertainty in the state space and in the observation vector, and a quadratic cost function. This is a form of robust control, where a dynamic programming solution has to be calculated. &sup1Werbos comments that most treatment of action nets or policies either assume enumerative maximization, which is good only for small problems, except for the games of Backgammon or Go [1], or, gradient-based training. The latter is prone to difficulties with local minima due to the non-convex nature of the cost-to-go function. With incremental methods, such as backpropagation through time, calculus of variations and model-predictive control, the dangers of non-convexity of the cost-to-go function with respect to the control is much less than the with respect to the critic parameters, when the sampling times are small. Therefore, getting the critic right has priority. But with larger sampling times, when the control represents a more complex plan, non-convexity becomes more serious.
5

Qualitative Studies of Nonlinear Hybrid Systems

Liu, Jun January 2010 (has links)
A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results.
6

Qualitative Studies of Nonlinear Hybrid Systems

Liu, Jun January 2010 (has links)
A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results.

Page generated in 0.0764 seconds