• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Simulation of a Hybrid Electric Vessel

Jaster, Tiffany 03 January 2014 (has links)
A proposed hybrid electric marine vehicle was modeled in MATLAB Simulink and SimPowerSystems. Models for each of the individual propulsion components were developed and incorporated into a complete hybrid electric propulsion model. A vessel resistance model was created to support vessel performance and energy requirement evaluation. The model incorporates data based on the ship principal parameters and hull form. A rule-based supervisory controller for the proposed vessel was constructed. It is an amalgamation of control strategies of three vehicle architectures: electric vehicle, fuel cell electric vehicle, and hybrid electric vehicle (HEV). The complete model of the hybrid electric propulsion, control, and resistance subsystems was simulated on a dSPACE hardware-in-the-loop platform. For each simulation, the energy storage system (ESS) state of charge, station keeping/cruising mode, HEV assist, Beaufort number, current speed, true wind angle, and hotel load were specified. From the simulations, it was demonstrated that using a 30% ESS assisted HEV mode results in reduced emissions and fuel consumption as compared to a conventional vessel powertrain mode, supporting the case for plug-in hybrid electric vessels. A larger capacity ESS has the potential to reduce emissions and fuel consumption further, depending on ship usage. The basic rule-based supervisory controller proved functional for facilitating adequate power flows; however, further development is needed to improve efficiency and the mode selection process. / Graduate / 0548

Page generated in 0.0451 seconds