• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of a Ground Source Heat Pump using Hybrid Model Predictive Control / Reglering av en bergvärmepump med hjälp av hybrid modellprediktiv reglering

Sundbrandt, Markus January 2011 (has links)
The thesis has been conducted at Bosch Thermoteknik AB and its aim is to develop a Model Predictive Control (MPC) controller for a ground source heat pump which minimizes the power consumption while being able to keep the inside air temperature and Domestic Hot Water (DHW) temperature within certain comfortintervals. First a model of the system is derived, since the system consists of both continuous and binary states a hybrid model is used. The MPC controller utilizes the model to predict the future states of the system, and by formulating an optimizationproblem an optimal control is achieved. The MPC controller is evaluated and compared to a conventional controller using simulations. After some tuning the MPC controller is capable of maintaining the inside air and DHW temperature at their reference levels without oscillating too much. The MPC controller’s general performance is quite similar to the conventional controller, but with a power consumption which is 1-3 % lower. A simulation using an inside air temperature reference which is lowered during the night is also conducted, it achieved a power consumption which was 7.5 % lower compared to a conventional controller.
2

A Control Engineering Approach for Designing an Optimized Treatment Plan for Fibromyalgia

January 2011 (has links)
abstract: There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily diary reports completed by participants of a blind naltrexone intervention trial. These self-reports include assessments of outcomes of interest (e.g., general pain symptoms, sleep quality) and additional external variables (disturbances) that affect these outcomes (e.g., stress, anxiety, and mood). Using prediction-error methods, a multi-input model describing the effect of drug, placebo and other disturbances on outcomes of interest is developed. This discrete time model is approximated by a continuous second order model with zero, which was found to be adequate to capture the dynamics of this intervention. Data from 40 participants in two clinical trials were analyzed and participants were classified as responders and non-responders based on the models obtained from system identification. The dynamical models can be used by a model predictive controller for automated dosage selection of naltrexone using feedback/feedforward control actions in the presence of external disturbances. The clinical requirement for categorical (i.e., discrete-valued) drug dosage levels creates a need for hybrid model predictive control (HMPC). The controller features a multiple degree-of-freedom formulation that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed loop system. The nominal and robust performance of the proposed control scheme is examined via simulation using system identification models from a representative participant in the naltrexone intervention trial. The controller evaluation described in this thesis gives credibility to the promise and applicability of control engineering principles for optimizing adaptive interventions. / Dissertation/Thesis / M.S. Electrical Engineering 2011
3

A Novel Engineering Approach to Modelling and Optimizing Smoking Cessation Interventions

January 2014 (has links)
abstract: Cigarette smoking remains a major global public health issue. This is partially due to the chronic and relapsing nature of tobacco use, which contributes to the approximately 90% quit attempt failure rate. The recent rise in mobile technologies has led to an increased ability to frequently measure smoking behaviors and related constructs over time, i.e., obtain intensive longitudinal data (ILD). Dynamical systems modeling and system identification methods from engineering offer a means to leverage ILD in order to better model dynamic smoking behaviors. In this dissertation, two sets of dynamical systems models are estimated using ILD from a smoking cessation clinical trial: one set describes cessation as a craving-mediated process; a second set was reverse-engineered and describes a psychological self-regulation process in which smoking activity regulates craving levels. The estimated expressions suggest that self-regulation more accurately describes cessation behavior change, and that the psychological self-regulator resembles a proportional-with-filter controller. In contrast to current clinical practice, adaptive smoking cessation interventions seek to personalize cessation treatment over time. An intervention of this nature generally reflects a control system with feedback and feedforward components, suggesting its design could benefit from a control systems engineering perspective. An adaptive intervention is designed in this dissertation in the form of a Hybrid Model Predictive Control (HMPC) decision algorithm. This algorithm assigns counseling, bupropion, and nicotine lozenges each day to promote tracking of target smoking and craving levels. Demonstrated through a diverse series of simulations, this HMPC-based intervention can aid a successful cessation attempt. Objective function weights and three-degree-of-freedom tuning parameters can be sensibly selected to achieve intervention performance goals despite strict clinical and operational constraints. Such tuning largely affects the rate at which peak bupropion and lozenge dosages are assigned; total post-quit smoking levels, craving offset, and other performance metrics are consequently affected. Overall, the interconnected nature of the smoking and craving controlled variables facilitate the controller's robust decision-making capabilities, even despite the presence of noise or plant-model mismatch. Altogether, this dissertation lays the conceptual and computational groundwork for future efforts to utilize engineering concepts to further study smoking behaviors and to optimize smoking cessation interventions. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2014
4

Dynamic Modeling, System Identification, and Control Engineering Approaches for Designing Optimized and Perpetually Adaptive Behavioral Health Interventions

January 2021 (has links)
abstract: Behavior-driven obesity has become one of the most challenging global epidemics since the 1990s, and is presently associated with the leading causes of death in the U.S. and worldwide, including diabetes, cardiovascular disease, strokes, and some forms of cancer. The use of system identification and control engineering principles in the design of novel and perpetually adaptive behavioral health interventions for promoting physical activity and healthy eating has been the central theme in many recent contributions. However, the absence of experimental studies specifically designed with the purpose of developing control-oriented behavioral models has restricted prior efforts in this domain to the use of hypothetical simulations to demonstrate the potential viability of these interventions. In this dissertation, the use of first-of-a-kind, real-life experimental results to develop dynamic, participant-validated behavioral models essential for the design and evaluation of optimized and adaptive behavioral interventions is examined. Following an intergenerational approach, the first part of this work aims to develop a dynamical systems model of intrauterine fetal growth with the prime goal of predicting infant birth weight, which has been associated with subsequent childhood and adult-onset obesity. The use of longitudinal input-output data from the “Healthy Mom Zone” intervention study has enabled the estimation and validation of this fetoplacental model. The second part establishes a set of data-driven behavioral models founded on Social Cognitive Theory (SCT). The “Just Walk” intervention experiment, developed at Arizona State University using system identification principles, has lent a unique opportunity to estimate and validate both black-box and semiphysical SCT models for predicting physical activity behavior. Further, this dissertation addresses some of the model estimation challenges arising from the limitations of “Just Walk”, including the need for developing nontraditional modeling approaches for short datasets, as well as delivers a new theoretical and algorithmic framework for structured state-space model estimation that can be used in a broader set of application domains. Finally, adaptive closed-loop intervention simulations of participant-validated SCT models from “Just Walk” are presented using a Hybrid Model Predictive Control (HMPC) control law. A simple HMPC controller reconfiguration strategy for designing both single- and multi-phase intervention designs is proposed. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2021
5

Modelování a řízení toků elektrické a tepelné energie v plně elektrických automobilech / Modeling and Control of Electric and Thermal Flows in Fully Electric Vehicles

Glos, Jan January 2020 (has links)
Systematické řízení tepelných a elektrických toků v plně elektrických automobilech se stává velmi důležitým, protože v těchto typech automobilů není k dispozici dostatek odpadního tepla pro vytápění kabiny. Aby v zimním období nedocházelo ke snížení dojezdu, je nutné použití technologií, které umožní snížení spotřeby energie nutné k vytápění kabiny (např. tepelné čerpadlo, zásobník tepla). Je také zapotřebí vytvořit řídicí algoritmy pro tato zařízení, aby byl zajištěn jejich optimální provoz. V letním období je nezbytné řídit tepelné toky v rámci elektromobilu tak, aby nedocházelo k nadměrnému vybíjení baterie kvůli chlazení kabiny a dalších částí. Tato práce řeší jak návrh řídicích algoritmů, tak i vývoj rozhodovacího algoritmu, který zajistí směřování tepelných toků.

Page generated in 0.0853 seconds