Spelling suggestions: "subject:"hybridmode"" "subject:"hybridmodel""
1 |
A fast, scalable acoustic resonator-based biosensor array system for simultaneous detection of multiple biomarkersMunir, Farasat 17 August 2012 (has links)
This thesis is about the design of a biosensor system for detection of multiple cancer biomarkers. Accurate diagnosis and prognosis of cancer requires early detection. Equally important, though, is the measurement of biomarker-velocity and detection of multiple biomarkers. Early detection requires highly sensitive biosensors capable of detection at very low concentrations of target molecules. Biomarker-velocity can be measured by monitoring concentration of target molecule over a period of time. This requires a system which is very easy to use, fast, flexible, inexpensive and portable, thus enabling its ubiquitous presence at the point of care. For detection of multiplexed biomarkers, biosensors which easily lend to array configuration are required. Conventional techniques do not fulfill either all or some aspects of the requirements listed above.
In this work, we present the design of a biosensor system, keeping in view the desired features described above, to achieve the ultimate goal of enabling ubiquitous presence of biosensor at the point of care. We focus on acoustic transducer based biosensors. The two fundamental components of design in an acoustic biosensor are the design of an acoustic transducer and the design of a novel electrical interface for the transducer. For transducer design, we introduce and present the design of a single structure, GHz range, multi-mode acoustic resonator. We present this as a suitable transducer for liquid phase biosensors, which is the preferred medium for sensing of cancer biomarkers. We explore the underlying physics and do experimental and theoretical characterization of this device. The transducer needs to be functionalized with a chemically sensitive layer which performs the molecular recognition of cancer biomarkers. We present the experimental exploration of a reversible and oriented immobilization based Histidine-Ni(2+) interaction which used NTA as the chelator for anchoring onto the device. Then we discuss the microfluidic design to enable liquid phase operation. We used SU-8 polymer barriers for liquid containment and addressed the challenges of making it compatible with ZnO based devices.
An electrical interface is needed to excite and extract the sensor response. We have presented here a novel method to measure and track a resonator's response and extract its characteristic parameters. This method measures the wideband frequency response of the resonator with a much simpler setup as compared to conventional methods. We have proposed and demonstrated the use of a white noise signal as a viable signal for broadband excitation of resonator-based sensing platforms. We have also established, shown through simulation and prototype measurements, the feasibility of the proposed method. The accuracy and speed of the system can be further greatly improved by FFT-based digital implementation of the spectral analysis system. We have presented an example hardware implementation of FFT-based signal analyzer, and have discussed the hardware resources required for actual implementation in a chip form. Lastly we discuss the measurement protocol and sensor results for head and neck cancer and prostate cancer biomarkers. These results demonstrate the usability of the proposed sensor system for detection of cancer biomarkers.
|
2 |
Vysoce náročné aplikace na svazku karet Intel Xeon Phi / High Performance Applications on Intel Xeon Phi ClusterKačurik, Tomáš January 2016 (has links)
The main topic of this thesis is the implementation and subsequent optimization of high performance applications on a cluster of Intel Xeon Phi coprocessors. Using two approaches to solve the N-Body problem, the possibilities of the program execution on a cluster of processors, coprocessors or both device types have been demonstrated. Two particular versions of the N-Body problem have been chosen - the naive and Barnes-hut. Both problems have been implemented and optimized. For better comparison of the achieved results, we only considered achieved acceleration against single node runs using processors only. In the case of the naive version a 15-fold increase has been achieved when using combination of processors and coprocessors on 8 computational nodes. The performance in this case was 9 TFLOP/s. Based on the obtained results we concluded the advantages and disadvantages of the program execution in the distributed environments using processors, coprocessors or both.
|
3 |
Laser à fibra dopada com érbio em regime de acoplamento híbrido de modos com absorção saturável baseada em nanotubos de carbonoPertile, Heidi Kaori Sato 24 January 2013 (has links)
Made available in DSpace on 2016-03-15T19:37:45Z (GMT). No. of bitstreams: 1
Heidi Kaori Sato Pertile.pdf: 2322047 bytes, checksum: aaee9a054b94e9557394faaf3251bec9 (MD5)
Previous issue date: 2013-01-24 / In this work we present a study on the generation of pulse train in an Erbium doped fiber laser in the hybrid mode-locking regime operating with short pulses at high repetition rates. The short pulses are generated by passive mode-locking technique using carbon nanotubes as saturable absorbers. High repetition rates are generated by active mode-locking technique using a phase modulator. We built cavities with three different mode-locking regimes: active, passive and, finally, hybrid, to compare results. In active and hybrid cavities we used an electro-optical modulator. In passive and hybrid cavities we used a homemade film of a polymer containing carbon nanotubes with diameter of 1 nm. With the cavity operating in the hybrid regime we obtained pulse durations of 1.77 ps with repetition rate of 10 GHz. / Neste trabalho apresentamos um estudo sobre a geração de trem de pulsos em laser à fibra dopada com Érbio operando em regime de acoplamento híbrido de modos, com pulsos curtos a altas taxas de repetição. Os pulsos curtos são obtidos pela técnica de acoplamento passivo de modos utilizando absorvedores saturáveis de carbono. As altas taxas de repetição são obtidas pela técnica de acoplamento ativo de modos através de um modulador. Construímos três cavidades distintas: ativa, passiva e finalmente a híbrida para comparação de resultados. Nas cavidades ativa e híbrida foi utilizado um modulador eletro-óptico de fase e, nas cavidades passiva e híbrida foi utilizado um filme de um polímero (NOA 73TM) contendo nanotubos de carbono com diâmetro de 1 nm por nós fabricado. Com a cavidade em regime híbrido de modos, foi obtida uma duração de pulso de 1,77 ps com uma taxa de repetição de 10 GHz.
|
4 |
Návrh nových aktivních filtrů pomocí grafů signálových toků / Design of new active filters, using signal flow graphsJašek, František January 2010 (has links)
This master’s thesis describes the design of the frequency filters by the help of the graph of the signal flows. There are defined by modern components like GVC (Generalized Voltage Conveyor), GCC (Generalized Current Conveyor), CF (Current Follower), DO-CF (Dual-Output Current Follower), OTA (Operational Transconductance Amplifier), BOTA (Ballanced Operational Transconductance Amplifier) and CFTA (Current Follower Transconductance Amplifier), the graphs of the signal flows, which describe their activity in the thesis. In the other part of the thesis is illustrated the procedure of the design of the frequency filters by the help of the graphs of the signal flows. For the concrete design was selected in the first case as the active component double output current follower and in the second case the CFTA. There are noted all designed circuits of the frequency filters also their characteristic equations in this thesis. The activity of the selected circuits was remitted to the analysis in the simulation program called PSpice. Because the active components, with which was engaged in the design of the filter which doesn’t exist in the real form, that is why the UCC, which is sufficing for attestation of the function of the circuit, was used for the simulation. The simulation was implemented in the frequency range 10 Hz to 10 MHz.
|
Page generated in 0.0231 seconds