• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL SIMULATION OF GAS - HYDRATE SLURRY TWO PHASE FLOW

Gong, Jing, Zhao, Jian-Kui 07 1900 (has links)
As a result of the problem of hydrate in multiphase pipelines in offshore production is becoming more and more severe with the increasing of the water depth, the study on oil-gas-water-hydrate has became a hot point of multiphase flow. In this paper, the hydrate particle and liquid phase was treated as pseudo-fluid, the steady hydraulic, thermodynamical and phase equilibrium calculation method of gas-hydrate slurry was developed. Comparison was carried out between calculated data and experimental data from flow loop in our laboratory. With strict flash calculation the following items were determined: the amount of hydrate; phase number; the location that hydrate appeared; flowrate and molar component of gas phase and liquid phase. Then thermodynamic quantities were carried out with proper relational expression. When Compositional model is used to simulate two phase flow, it is required to couple mass, momentum, energy equation and equation of state. In the other word, the parameters in these four equations are interacted. However they are all the functions of p, T and z. In steady condition, it’s assumed that the composition of fluid is unchangeable along the pipeline and the flow can be described by pressure and temperature. In this paper, calculation method of gas-liquid two phase flow which respectively was improved. Liquid holdup and pressure drop were calculated by momentum equation. Enthalpy balance equation was substituted by explicit formulation of temperature calculation which meant that the loop of temperature was not required.

Page generated in 0.0639 seconds