• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HYDRATE PLUGGING POTENTIAL IN UNDERINHIBITED SYSTEMS

Hemmingsen, Pål V., Li, Xiaoyun, Kinnari, Keijo 07 1900 (has links)
An underinhibited system is defined as a system where an insufficient amount of thermodynamic inhibitor is present to prevent hydrate formation. Underinhibition might occur due to malfunctioning of equipment, temporary limitations in the inhibitor supplies or operational limitations or errors. Understanding the plugging risk of such systems is important in order to take the correct precautions to avoid blocked flowlines. In this paper we summarize the experimental efforts for the last decade within StatoilHydro on the hydrate plugging risk in underinhibited systems. The flow simulator has been used as the main experimental equipment. The overall results for systems underinhibited with ethylene glycol or methanol show that the plugging potential increases up to a maximum at concentrations around 10-15 wt%. At higher concentrations the plugging potential reduces compared to the uninhibited system. The results can be explained as follows: As water is converted to hydrates in a system containing a thermodynamic inhibitor, the inhibitor concentration will increase until the remaining aqueous phase is inhibited. This self-inhibited aqueous phase will wet the hydrate particles, giving raise to the characteristic term of “sticky” hydrate particles. The aqueous layer surrounding the hydrate particles will form liquid bridges, by capillary attractive forces, upon contact with other hydrate particles or the pipe wall. During the hydrate formation period, there is also a possibility that some of the liquid bridges are converted to solid ones, strengthening the agglomerates. Depending on the oil-water interfacial tension, the phase ratio between the aqueous phase and the solid hydrates and the conversion of liquid bridges to solid ones, this leads to increased plugging risk at lower concentrations of inhibitor (< 20 wt%) and reduced risk at higher concentrations as compared to the uninhibited system.

Page generated in 0.0905 seconds