• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 12
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Volume 2 – Conference

22 June 2020 (has links)
We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuators / Der Download des Gesamtbandes wird erst nach der Konferenz ab 15. Oktober 2020 möglich sein.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuators
12

The roof wing opening system of the UAE pavilion at EXPO 2020

Leutenegger, Paolo, Vergano, Carlo, Herzinger, Rainer, Weber, Jürgen, Bassetto, Nicola, Belluschi, Fabio, Cardani, Riccardo, Costin, Ina, Codari, Costanzo, Ferla, Stefano, Forti, Giovanni, Köhler, Simon, Maddalon, Roberto, Pari, Gino, Panev, Daniel, Pavanetto, Michele, Poli, Christian, Ripamonti, Massimo, Rossignoli, Alessandro, Trau, Matteo, Uhlmann, Jonas, Zaltieri, Renzo 26 June 2020 (has links)
The UAE Pavilion will be a major attraction at Expo 2020 in Dubai. The roof of the building consists of 28 operable wings made of carbon and glass fiber, having masses ranging from 5 to 18 tons and total lengths in the range of 30 to 65 m that have to be actuated by a dedicated mechanism. In this paper we present the turn-key project for the design, manufacturing, installation, test and commissioning of the Roof Wing Opening System, which represents a unique system world-wide for operating the wings. It consists of one Hydraulic Power Unit with approximately 1 MW of installed power, 2 km of piping working at the nominal pressure of 210 bar, 46 hydraulic cylinders with 1.5 tons of mass each and the complete automation and control subsystem that includes 9 separate PLCs, dedicated software, 2.000 sensors and control points, and over 20 km of harness. One major challenge is the control of the wings. Part of them, due to their huge dimensions and masses, are actuated using two or three hydraulic cylinders that have to be properly synchronized during the movement, preventing unwanted displacements in order to avoid stresses on the wing mechanical structure and ultimately permanent damages. Due to the nature of the project, a final validation of the control algorithms can be done only at system level during the commissioning phase. Therefore, particular care has to be devoted to the verification strategy, anticipating the behavior of the system in the early validation stages and following a V-model approach, in order to identify critical situations and reduce the overall risk. After a brief system description, we will explain how the verification has been approached by using system level simulations and dedicated testing activities on specific subsystems. In particular, we will detail the verification of the control algorithms that has been performed on a dedicated Hardware-Inthe- Loop system first, followed then by dedicated tests on a reduced wing mock-up, allowing the study of the system behavior under the most critical conditions. These include the application of external forces with specified profiles. Finally, we will provide the actual status of the system installation, testing and commissioning activities that have been running in Dubai since January 2019.

Page generated in 0.0582 seconds