• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bore-Induced Local Scour around a Circular Structure

Lavictoire, Alexandra January 2015 (has links)
Recent natural disasters, such as major tsunamis, have prompted researchers and practicing engineers to improve their understanding of the impacts of bore-like waves on structures and their foundations. The high velocity and the relatively short duration of hydraulic bores causes local scouring which is different from that generated by river flows and waves. The present study uses an experimental model to simulate the propagation of a hydraulic bore over a movable sediment bed placed around a circular pier-like structure. Measurements of water surface elevation, bore propagation velocity and scour distribution were taken. The linear relationship between reservoir depth and bore depth led to an increase in flow acceleration, and thus to an increase in flow velocity. Final scour bed elevations indicated that scour depth was highly dependent on the bore velocity. The scour depth ratios suggested in current design guidelines were significantly lower than those obtained in this study.
2

Numerical Modeling of Extreme Flow Impacts on Structures

Asadollahi Shahbaboli, Nora January 2016 (has links)
Recent tsunami disasters caused devastating damages to well-engineered coastal infrastructures. In fact, the current design guidelines are not able to provide realistic estimations of tsunami loads in order to design structures to withstand tsunamis. Tsunami hydrodynamic forces are estimated using the drag coefficient. This coefficient is traditionally calculated based on a steady flow analogy. However, tsunami bores behave like unsteady flows. The present work aims at investigating the tsunami forces for different structure geometries to provide realistic guidelines to estimate drag coefficients considering unsteady flows. In the present paper, the dam-break approach is used to investigate the tsunami-like bore interaction with structures. A three-dimensional multiphase numerical model is implemented to study the tsunami induced forces on rectangular shape structures with various aspect ratios (width/depth) and orientations. The numerical model results are validated using measured forces and bore surface elevations of the physical experiments. A scaled-up domain is modeled in order to eliminate the effects of domain sidewalls in the simulation results. The drag coefficient relations with structure geometries and bore depths are provided. The obtained hydrodynamic forces and drag coefficients are compared with existing data in the literature and design codes. For the second topic, a multi-phase three-dimensional numerical reproduction of a large scale laboratory experiment of tsunami-like bores interaction with a surface-piercing circular column is presented. The numerical simulation is conducted in OpenFOAM. The dam-break mechanism is implemented in order to generate tsunami-like bores. The numerical model is validated using the experimental results performed at Canadian Hydraulics Center of the National Research Council (NRC-CHC) in Ottawa. The unsteady Reynolds Averaged Navier-Stokes equations (RANS) are used in order to treat the turbulence effects. The Shear Stress Transport (SST) k-ω turbulence model showed high level of accuracy in replication of the bore-structure interaction. Further, a scaled-up domain is used to investigate the influence of the bed condition in terms of various downstream depths and roughness. Finally, a broad investigation on the bore propagation characteristics is performed. The resulting stream-wise forces exerted on the structural column as well as the bore velocity are compared and analyzed for smooth, rough, dry and wet beds with varying depths.
3

Extreme Hydrodynamic Loading on Near-Shore Structures

Al-Faesly, Taofiq Qassim January 2016 (has links)
The main objective of this study was to investigate and quantify the impact of extreme hydrodynamic forces, similar to those generated by tsunami-induced inundation, on structural elements. As part of a comprehensive experimental program and analytical study, pressures, base shear forces, and base overturning moments generated by hydraulic bores on structural models of various shapes were studied. In addition, the impact force induced by waterborne wooden debris of different shapes and masses on the structural models was also investigated. Two structural models, one with circular and the other with square cross-section, were installed individually downstream of a dam-break wave in a high-discharge flume. Three impounding water heights (550, 850 and 1150 mm) were used to produce dam-break waves, which have been shown to be analogous to tsunami-induced coastal inundation in the form of highly turbulent hydraulic bores. Time-history responses of the structural models were recorded, including: pressures, base shear forces, base overturning moments, lateral displacements, and accelerations. In addition, the flow depth-time histories were recorded at various locations along the length of the flume. Regular and high-speed video cameras were used to monitor the bore-structure interaction. The effect of initial flume bed condition (“wet” or “dry” bed) on the forces and pressures exerted on the structural models were also investigated. Moreover, the vertical distribution of pressure around the models was captured. Simple low-height walls with various geometries were installed upstream from the structural models to investigate their efficiency as tsunami mitigation measures. The experimentally recorded data were compared with those estimated from currently available formulations. The results and analysis of the simulated tsunami-induced bore presented in this study will be of significant use to better estimate forces exerted on structures by tsunami-induced turbulent bores. It is expected that this work will contribute to the new ASCE7 Chapter 6 - Tsunami Loads and Effects in which two of this author’s academic supervisors, Drs. Ioan Nistor and Dan Palermo, are members.

Page generated in 0.0675 seconds