• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 60
  • 26
  • 23
  • 18
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 4
  • Tagged with
  • 530
  • 106
  • 71
  • 70
  • 67
  • 61
  • 58
  • 50
  • 46
  • 46
  • 46
  • 43
  • 32
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Geologic controls on the occurrence and movement of water in the Lower Cienega Creek Basin

Ellett, William Jess, January 1994 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona. / Includes bibliographical references (leaves 113-116).
32

Untersuchungen über den Energieverlust des Wassers in Turbinenkanälen

Oesterlin, Hermann. January 1903 (has links)
Inaug.-diss.--Technische Hochschule, Karlsruhe.
33

Free flow and submergence effects of overflow dams

Roethe, Arthur R., January 1967 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1967. / Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
34

Empirical velocity predictions at culvert inlets

Patton, Jesse Earl. January 2006 (has links) (PDF)
Thesis (M.S.)--Montana State University--Bozeman, 2006. / Typescript. Chairperson, Graduate Committee: Joel Cahoon. Includes bibliographical references (leaf 35).
35

Modelling river ice freeze-up on the Red River near Netley Cut

Haresign, Melissa 18 September 2012 (has links)
CRISSP2D, a two-dimensional finite element model, was used to undertake a comprehensive hydrodynamic, thermodynamic, and dynamic ice study on the Red River near Netley Cut in order to determine the cut's effect on the local hydrodynamics and freeze-up processes. Open water hydrodynamic and thermodynamic models were developed, calibrated, and verified such that the measured data and simulation results were in acceptable agreement. These models were used as input to the dynamic ice model which was able to adequately predict ice thickness within the study area once the air-ice heat transfer coefficient was calibrated. The geometry of the dynamic ice model was subsequently altered to simulate the effects of sealing Netley Cut. The geometry change resulted in no noticeable difference in simulated ice thickness, but did affect the hydrodynamics within the study area. In particular, the water velocity in the Red River downstream of Netley Cut and water surface elevation upstream of Netley Cut both increased noticeably.
36

Modelling river ice freeze-up on the Red River near Netley Cut

Haresign, Melissa 18 September 2012 (has links)
CRISSP2D, a two-dimensional finite element model, was used to undertake a comprehensive hydrodynamic, thermodynamic, and dynamic ice study on the Red River near Netley Cut in order to determine the cut's effect on the local hydrodynamics and freeze-up processes. Open water hydrodynamic and thermodynamic models were developed, calibrated, and verified such that the measured data and simulation results were in acceptable agreement. These models were used as input to the dynamic ice model which was able to adequately predict ice thickness within the study area once the air-ice heat transfer coefficient was calibrated. The geometry of the dynamic ice model was subsequently altered to simulate the effects of sealing Netley Cut. The geometry change resulted in no noticeable difference in simulated ice thickness, but did affect the hydrodynamics within the study area. In particular, the water velocity in the Red River downstream of Netley Cut and water surface elevation upstream of Netley Cut both increased noticeably.
37

Flow characteristics of water at the entrance to a circular drop-inlet

Folsche, William Richard. January 1961 (has links)
Call number: LD2668 .T4 1961 F64
38

Inflatable weir hydraulics

Tagwi, Dayton 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: General objective of the study This thesis aims to evaluate the hydraulics of an inflatable weir in its fully inflated position to the almost fully deflated position using different diameter circular weirs with varying discharges, by considering the change in the weir radius and the dynamic pressures on the weir. In the evaluation, three cylindrical weirs were installed in a 2m wide flume and tested over various discharges. Methodology The three weirs, one with a 300mm diameter, another with a 250mm diameter, and the last one with a 100mm diameter, were used to determine the effects of over flow water on the weir as seen in the different stages of the normal operation of an inflatable weir. Simulation involved measurement of the upstream and downstream water levels with the weir height involved at stable over flow conditions. Measurement of pressure variations was done on the weir faces with different water inflow rates to the test flume with three pressure sensors installed on each weir at 0°, 11.25° and 22.5° from the crest to the downstream. Additionally a single 0.15m radius weir was tested for pressures 67.5°, 78.75° and 90° from weir crest. Water level variation on the downstream of the weir was created by means of a variable tail gate to observe its effects. Results of the investigation The effects of upstream arches, stage, radius of curvature, discharge, pressure, energy losses over the weir and the downstream hydraulic jump were investigated in the inflation and deflation of the inflatable weir. The findings were as follows: ►Based on literature by Chanson and Montes (1998), Shabanlou et al. (2013), Schmockeret al. (2011) and Bahzad et al. (2010), upstream arches have insignificant influence onthe performance of the inflatable weir. There is rather reduced afflux due to the shape ofthe upstream of the weir from the Bernoulli’s equation. This shape of the upstream of theweir also contributes to the transport of sediments Gebhardt et al. (2012). ►Investigation of the discharge coefficient and factors influencing showed that: oAs the weir radius is reduced during the deflation, the unit discharge over each weirincreased with increase in head above the crest. oDischarge coefficient of the inflatable weir increases with the increase in head aboveweir crest, and the discharge coefficient is inversely proportional to the radius ofcurvature of the weir. ►Investigation of pressures on the downstream face of the weir models showed that: oThe negative (suction) pressure acting on the downstream face of the weir becomesincreasingly negative with increase in H/R values. oPoint of separation of nappe was seen with pulsations of pressure of the recordpressure. Generally, energy dissipation over the weir decreases with the decrease in the weir radius and the jump is more stable with the smallest circular weir and can be more accurately determined in the case of a small weir. Conclusions and Recommendations The inflatable weir has a high discharge at its fully inflated position. Its hydraulic performance is largely influenced by inflow head and is inversely proportional to the radius of curvature. Nappe pulsation as seen in the nappe vibrations can cause the vibration of weir. Future research on inflatable weirs should aim to monitor the negative pressure on measuring pressures further down the face of the weir because larger negative pressures are expected to develop after 90˚ as with this study.
39

Active water-wave control by a submerged pitching plate

葉子良, Yip, Tsz-leung. January 1997 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
40

Developing flow in a rotating duct

Hui, Tze-mei, 許嗣美 January 1979 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy

Page generated in 0.0319 seconds