• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane Electrode Assemblies Based on Hydrocarbon Ionomers and New Catalyst Supports for PEM Fuel Cells

von Kraemer, Sophie January 2008 (has links)
The proton exchange membrane fuel cell (PEMFC) is a potential electrochemicalpower device for vehicles, auxiliary power units and small-scale power plants. In themembrane electrode assembly (MEA), which is the core of the PEMFC single cell,oxygen in air and hydrogen electrochemically react on separate sides of a membraneand electrical energy is generated. The main challenges of the technology are associatedwith cost and lifetime. To meet these demands, firstly, the component expensesought to be reduced. Secondly, enabling system operation at elevated temperatures,i.e. up to 120 °C, would decrease the complexity of the system and subsequentlyresult in decreased system cost. These aspects and the demand for sufficientlifetime are the strong motives for development of new materials in the field.In this thesis, MEAs based on alternative materials are investigatedwith focus on hydrocarbon proton-conducting polymers, i.e. ionomers, and newcatalyst supports. The materials are evaluated by electrochemical methods, such ascyclic voltammetry, polarisation and impedance measurements; morphological studiesare also undertaken. The choice of ionomers, used in the porous electrodes andmembrane, is crucial in the development of high-performing stable MEAs for dynamicoperating conditions. The MEAs are optimised in terms of electrode compositionand preparation, as these parameters influence the electrode structure andthus the MEA performance. The successfully developed MEAs, based on the hydrocarbonionomer sulfonated polysulfone (sPSU), show promising fuel cell performancein a wide temperature range. Yet, these membranes induce mass-transportlimitations in the electrodes, resulting in deteriorated MEA performance. Further,the structure of the hydrated membranes is examined by nuclear magnetic resonancecryoporometry, revealing a relation between water domain size distributionand mechanical stability of the sPSU membranes. The sPSU electrodes possessproperties similar to those of the Nafion electrode, resulting in high fuel cell performancewhen combined with a high-performing membrane. Also, new catalystsupports are investigated; composite electrodes, in which deposition of platinum(Pt) onto titanium dioxide reduces the direct contact between Pt and carbon, showpromising performance and ex-situ stability. Use of graphitised carbon as catalystsupport improves the electrode stability as revealed by a fuel cell degradation study.The thesis reveals the importance of a precise MEA developmentstrategy, involving a broad methodology for investigating new materials both as integratedMEAs and as separate components. As the MEA components and processesinteract, a holistic approach is required to enable successful design of newMEAs and ultimately development of high-performing low-cost PEMFC systems. / QC 20100922
2

Electrode degradation in proton exchange membrane fuel cells

Oyarce, Alejandro January 2013 (has links)
The topic of this thesis is the degradation of fuel cell electrodes in proton exchange membrane fuel cells (PEMFCs). In particular, the degradation associated with localized fuel starvation, which is often encountered during start-ups and shut-downs (SUs/SDs) of PEMFCs. At SU/SD, O2 and H2 usually coexist in the anode compartment. This situation forces the opposite electrode, i.e. the cathode, to very high potentials, resulting in the corrosion of the carbon supporting the catalyst, referred to as carbon corrosion. The aim of this thesis has been to develop methods, materials and strategies to address the issues associated to carbon corrosion in PEMFC.The extent of catalyst degradation is commonly evaluated determining the electrochemically active surface area (ECSA) of fuel cell electrode. Therefore, it was considered important to study the effect of RH, temperature and type of accelerated degradation test (ADT) on the ECSA. Low RH decreases the ECSA of the electrode, attributed to re-structuring the ionomer and loss of contact with the catalyst.In the search for more durable supports, we evaluated different accelerated degradation tests (ADTs) for carbon corrosion. Potentiostatic holds at 1.2 V vs. RHE were found to be too mild. Potentiostatic holds at 1.4 V vs. RHE were found to induce a large degree of reversibility, also attributed to ionomer re-structuring. Triangle-wave potential cycling was found to irreversibly degrade the electrode within a reasonable amount of time, closely simulating SU/SD conditions.Corrosion of carbon-based supports not only degrades the catalyst by lowering the ECSA, but also has a profound effect on the electrode morphology. Decreased electrode porosity, increased agglomerate size and ionomer enrichment all contribute to the degradation of the mass-transport properties of the cathode. Graphitized carbon fibers were found to be 5 times more corrosion resistant than conventional carbons, primarily attributed to their lower surface area. Furthermore, fibers were found to better maintain the integrity of the electrode morphology, generally showing less degradation of the mass-transport losses. Different system strategies for shut-down were evaluated. Not doing anything to the fuel cell during shut-downs is detrimental for the fuel cell. O2 consumption with a load and H2 purge of the cathode were found to give around 100 times lower degradation rates compared to not doing anything and almost 10 times lower degradation rate than a simple air purge of the anode. Finally, in-situ measurements of contact resistance showed that the contact resistance between GDL and BPP is highly dynamic and changes with operating conditions. / Denna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena. / <p>QC 20131104</p>

Page generated in 0.0666 seconds