• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 758
  • 116
  • 115
  • 93
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 15
  • 11
  • 9
  • 8
  • 6
  • Tagged with
  • 1441
  • 212
  • 189
  • 165
  • 144
  • 130
  • 126
  • 111
  • 108
  • 101
  • 99
  • 96
  • 91
  • 91
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Hydrodynamics of Balistiform swimming in the Picasso Triggerfish, Rhinecanthus aculeatus

Loofbourrow, Hale 05 1900 (has links)
Aquatic propulsion by means of undulatory movements of the median (dorsal and anal) fins is the primary mode of transport for the Picasso triggerfish (Rhinecanthus aculeatus). Known as balistiform locomotion, this form of propulsion is an adaptation for highly efficient movement within complex environments such as coral reefs. A principle component of balistiform locomotion has been the development of momentum enhancement, a fin-force multiplier that increases swimming efficiency. This study examines the kinematics and energetics of balistiform locomotion employing theoretical models of thrust, power, and efficiency. Thrust and power were calculated and compared with theoretical values modeled by Lighthill and Blake (1990). This model has heretofore not been thoroughly vetted and was tested for accuracy and applicability. Thrust force was estimated from resistance (drag) using a vertical dead drop to determine terminal velocity; power was calculated from oxygen consumption measurements at different speeds. The Lighthill and Blake (1990) model requires median fin kinematics (frequency, wavelength, amplitude, wave angle), which were measured from high-speed videography and followed statistically predicted trends with frequency being the dominant variable, and the others changing little or not at all with speed. Momentum enhancement was found to be 3.6, close to Lighthill and Blake’s (1990) theoretically predicted value of 2.5. Momentum enhancement is experimentally proven here for the first time. Theoretical and empirical thrust force values are closely matched; theoretical thrust is greater at lower speeds and lower at higher speeds. The ratio of theoretical thrust to drag-estimated thrust averages 1.08. Theoretical values for power are greater than those measured by a factor of about 3.6 and cannot be explained by measurement error.
262

Retention dynamics for small particles on cylindrical fibers

Dyer, David A. 01 January 1977 (has links)
No description available.
263

Formulation and application of numerical schemes in surface water flows /

Zhang, Shiqiong. January 2003 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 70-74). Also available in electronic version. Access restricted to campus users.
264

Dissertazione sopra il quesito come si generino i vortici orizzontali, e verticali appiè degli argini in corrosionne ...

Ludeña, Antonio, January 1786 (has links)
Thesis (doctoral)--Reale Accademia di Scienze e Belle Lettere di Mantova, 1784. / Attributed to Antonio Ludeña. Signatures: a-c⁸ d³.
265

Reactive transport modeling in fractures and two-phase flow

Noh, Myeong Hwan 28 August 2008 (has links)
Not available / text
266

Simulation of initial stage of water impact on 2-D members with multigridded volume of fluid method

吳朝安, Ng, Chiu-on. January 1990 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
267

Boundary effect on ship-generated waves

鄭耀煥, Cheng, Yiu-woon. January 1998 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
268

Stability of transverse waves in shallow flows

Khayat, R. E. (Roger Edmond) January 1981 (has links)
No description available.
269

Hydrodynamics of Balistiform swimming in the Picasso Triggerfish, Rhinecanthus aculeatus

Loofbourrow, Hale 05 1900 (has links)
Aquatic propulsion by means of undulatory movements of the median (dorsal and anal) fins is the primary mode of transport for the Picasso triggerfish (Rhinecanthus aculeatus). Known as balistiform locomotion, this form of propulsion is an adaptation for highly efficient movement within complex environments such as coral reefs. A principle component of balistiform locomotion has been the development of momentum enhancement, a fin-force multiplier that increases swimming efficiency. This study examines the kinematics and energetics of balistiform locomotion employing theoretical models of thrust, power, and efficiency. Thrust and power were calculated and compared with theoretical values modeled by Lighthill and Blake (1990). This model has heretofore not been thoroughly vetted and was tested for accuracy and applicability. Thrust force was estimated from resistance (drag) using a vertical dead drop to determine terminal velocity; power was calculated from oxygen consumption measurements at different speeds. The Lighthill and Blake (1990) model requires median fin kinematics (frequency, wavelength, amplitude, wave angle), which were measured from high-speed videography and followed statistically predicted trends with frequency being the dominant variable, and the others changing little or not at all with speed. Momentum enhancement was found to be 3.6, close to Lighthill and Blake’s (1990) theoretically predicted value of 2.5. Momentum enhancement is experimentally proven here for the first time. Theoretical and empirical thrust force values are closely matched; theoretical thrust is greater at lower speeds and lower at higher speeds. The ratio of theoretical thrust to drag-estimated thrust averages 1.08. Theoretical values for power are greater than those measured by a factor of about 3.6 and cannot be explained by measurement error.
270

Hydrodynamic controls on the movement of invertebrate larvae and organic matter in small streams

Hoover, Trent 11 1900 (has links)
The movement of organisms and resources within ecosystems are essential elements in the productivity, stability, and distribution of communities. This thesis examines how water velocity, a defining factor of lotic systems, influences the dispersion of benthic organisms and particulate organic matter in small stream ecosystems. Variation in movement-related behaviours in two rheophilous (‘flow-loving’) mayflies (Epeorus and Baetis) and two rheophobic (‘flow-avoiding’) mayflies (Ameletus and Paraleptophlebia) were compared to determine how benthic organisms disperse between and within habitat patches in hydrodynamically complex landscapes. The degree to which water velocity and particle shape influence the retention of organic matter (including deciduous leaves, conifer needles, red-cedar fronds, and branch fragments) was examined to determine how physical factors determine detrital resource availability in streams. Although water velocity did not influence the crawling rates of Baetis and Ameletus in daylight conditions, both mayflies dispersed rapidly upstream in low-velocity flows in dark conditions. Drift rates of both mayflies were lower in daylight than dark conditions, and were generally inversely related to their habitat preferences. Escape responses in grazing Epeorus, Baetis, and Ameletus larvae in a range of flow conditions showed that retreat distance was more sensitive than flight initiation distance to variation in water velocity, suggesting that hydrodynamics mediate the risks of predation and the costs of flight in stream systems. Comparisons of the transport distances of live larvae, dead larvae, and passive tracer particles in low and high water velocities showed that drift distance varied substantially among taxa, and that behavioural control over drift distance generally declined as water velocity increased. While organic matter particles generally travelled further in high-velocity reaches, leaves were retained in riffles when they impacted on protruding clasts, while ‘stiff’ particles were retained when they settled into streambed interstices. Leaves placed in high-velocity microhabitats were broken down more slowly than leaves in low-flow areas, likely due to the exclusion of large-bodied detritivores. In conclusion, this thesis supports the view that hydrodynamic forces control trophic interactions and local population dynamics in stream ecosystems by directly altering the physical – and sometimes behavioural – processes of particle entrainment, transport, and deposition.

Page generated in 0.0692 seconds