• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 16
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Humpback Whale-like Protuberances on Hydrofoil Performance

Custodio, Derrick S 13 December 2007 (has links)
"Despite its size the humpback whale is extremely maneuverable. This has been attributed to their use of pectoral flippers, along which protuberances are present along the leading edge. There has been speculation that the protuberances along the leading edge of the pectoral flipper act as a form of passive flow control. To examine the effects of protuberances on hydrofoil performance, the lift, drag, and pitching moments of two-dimensional hydrofoils with leading edge sinusoidal protuberances were measured in a water tunnel and compared to those of a baseline NACA 634-021 hydrofoil. The amplitude of the protuberances ranged from 2.5% to 12% of the mean chord length and the spanwise wavelengths were 25% and 50% of the mean chord length. This corresponds to the morphology found on the leading edge of humpback whale’s flippers. Flow visualization using tufts and dye was also performed to examine the near surface flow patterns surrounding the hydrofoils. At angles of attack lower than the stall angle of the baseline the modified foils revealed reduced lift and increased drag. However, above this angle the lift generated by the modified foils was up to 50% greater than the baseline foil with little or no drag penalty. The amplitude of the protuberances has a large effect on the performance of the hydrofoils whereas the wavelength has little. Corroborating lift and drag measurements, visualizations show attached flow on the peaks of the protuberances and separation in the valleys at angles beyond the stall angle of the baseline foil."
2

Development of a high speed planing trimaran with hydrofoil support /

Grobler, Barend January 2007 (has links)
Thesis (MScIng)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.
3

Comparative evaluation of a hydrofoil-assisted trimaran /

Moolman, Ryno. January 2005 (has links)
Thesis (MScIng)--University of Stellenbosch, 2005. / Bibliography. Also available via the Internet.
4

The design of a hydrofoil system for sailing catamarans /

Loveday, Howard. January 2006 (has links)
Thesis (MScIng)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
5

A passive suspension system for a hydrofoil supported catamaran /

Köpke, Markus. January 2008 (has links)
Thesis (MScIng)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
6

Oscillating Hydrofoil Propulsion for Human-Powered Watercraft Applications

Fernandez, Rajan January 2013 (has links)
Unlike conventional propellers, flapping wings may generate large amplitude oscillating forces, which can make them difficult to incorporate into a craft design. This is particularly true for a single, vertically oscillating hydrofoil, as part of a surface water craft where the cyclic lift of the hydrofoil disrupts the craft stability. This thesis begins by reviewing the history of human-powered watercraft with a focus on those having flapping foil propellers. This review combined with a review of the literature provides a balanced overview on how flapping wing propellers are currently designed. Current literature shows that although the mean performance of an oscillating foil has been determined in terms of the Strouhal number and the angle of attack, relatively little describes performance directly in terms of the foil motion. Hence, predicting temporal hydrodynamic forces acting on an oscillating foil is difficult. This provides motivation for research investigating the temporal performance of an oscillating foil directly in terms of its motion. In this thesis, experimental equipment designed to measure the hydrodynamic forces on a heaving object is presented. Key features of the equipment are analysed to show how measurement accuracy is maintained. Experimental measurements of unsteady hydrodynamic forces acting on a heaving cylinder, flat plate, symmetrical foil, and an asymmetrical foil are analysed with respect to the heaving motion. Firstly, the object motion is limited to one degree of freedom; pure heaving with zero forward velocity, to investigate the start-up conditions of the oscillating hydrofoil propeller. Secondly, these results are expanded on by adding a steady forward velocity component to the object motion to investigate how the hydrodynamic forces on the object are affected by the cross-flow. Experimental temporal hydrodynamic force measurements presented in this thesis show how the relative composition of hydrodynamic drag and inertia forces change with oscillating frequency, and forward velocity, affecting the phase, magnitude, and profile of the force cycles. This composition is also influenced by the cross-section of the oscillating object and the presence of a free surface. Current marine engineering equations for unsteady hydrodynamic forces on an object in an oscillating flow are validated for a cylinder. However, they are found to contain significant error when predicting the unsteady hydrodynamic forces on an oscillating hydrofoil. Contributions of this thesis link oscillating foil propulsion research to common marine engineering equations with the intent of making flapping wing propeller design more accessible to the general engineering community.
7

The Effect of Humpback Whale-Like Protuberances on Hydrofoil Performance

Custodio, Derrick 26 April 2012 (has links)
The humpback whale is very maneuverable despite its enormous size and rigid body. This agility has been attributed to the use of its pectoral flippers, along the leading edge of which protuberances are present. The leading edge protuberances are considered by some biologists to be a form of passive flow control and/or drag reduction. Force and moment measurements along with qualitative and quantitative flow visualizations were carried out in water tunnel experiments on full-span and finite-span hydrofoil models with several different planforms and protuberance geometries. A NACA 634-021 cross-sectional airfoil profile was used for the baseline foil in all tests. Four planform geometries chosen included: a full-span set of foils which spanned the breadth of the water tunnel, a finite-span rectangular planform, a finite-span swept hydrofoil, and a scale flipper model that resembled the morphology of the humpback whale flipper. A variety of sinusoidal protuberance geometries which included three amplitudes equal to 2.5%, 5%, and 12% and wavelengths of 25% and 50% of the local chord were examined in combination with the different planform geometries. Testing included force and moment measurements and Particle Image Velocimetry (PIV) to examine the load characteristics and flow field surrounding the modified foils. Load measurements show that modified foils are capable of generating higher lift than the baseline at high angles of attack while at low angle of attack the baseline generally produces a lift coefficient equal to or greater than the modified cases. With the exception of the modified flipper model, the drag coefficients of the modified hydrofoils are either equal to or greater than their baseline counterparts. The increased drag reduces the lift-to-drag ratio. Flow visualizations show that vortical structures emanating from the shoulders of the protuberances are responsible for increased lift and drag at high angles. Cavitation tests show that modified foils cavitate in pockets behind the troughs of protuberances whereas the baseline foils produce cavitation along the entire foil span. Also, the cavitation numbers on modified hydrofoils were consistently higher than their baseline counterparts. This work shows the effect of leading edge protuberances on the aforementioned performance characteristics.
8

A comparative analysis of naval hydrofoil and displacement ship design.

Grostick, John Larsen January 1975 (has links)
Thesis (Nav.Arch and S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1975. / Includes bibliographical references. / Nav.Arch and S.M.
9

Fast model controller for a hydrofoil craft

Kanneman, Thomas A. January 1967 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1967. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
10

Hydrofoil pro kiteboarding -- návrh a výroba segmentu

Vlach, Marek January 2016 (has links)
This work is about relation between material and technology for developing specific product used in field of sport equipment. Designed was mast or hydrofoil for kiteboarding. Basic part is about terminology, history, physical principle and actual market research. Next topic is related whit material selection, where is best choice carbon fiber reinforced composite. A description of composites goes from general information to specific steps in technology. Author describes practical experiences whit exclusive autoclave technology and also other methods. In practical part was prepared three prototypes whit deferent composition and technology. Core and moulds was made from wooden based materials which ware manufactured in three dimensions whit CNC machine. Fist prototype was laminated only on core, second used sandwich construction in mould and third combines these two methods.

Page generated in 0.0236 seconds