• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 13
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 126
  • 31
  • 19
  • 17
  • 15
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Noise of high speed propellers : A prediction method

Li, K. M. January 1986 (has links)
No description available.
2

Numerical prediction of propeller scale effect

Stainer, Michael John January 2002 (has links)
No description available.
3

A neural network architecture composed of adaptively defined dissimilar single-neurons : applications in engineering design

Neocleous, Costantinos C. January 1997 (has links)
No description available.
4

An improved mathematical model of the action of open propellers and ducted thrusters

Koumbis, A. January 1981 (has links)
No description available.
5

Utveckling och validering av propellermodell baserat på rörelsemängdskälla för ett friströmningsfall

Zimmerman, Linus January 2015 (has links)
Propellersimulering genom Computational Fluid Dynamics (CFD) används mer och mer i ett tidigt designstadium gällande fartygs framdrift. Rolls-Royce Hydrodynamic Research Centre har lång erfarenhet av propellerdesign och analysarbete genom både modelltester och numerisk simulering, och CFD används idag för ett flertal olika tillämpningar och syften.   Att utnyttja en tidseffektiv och enkel simuleringsmetod är en betydelsefull strategi och tid gentemot noggrannhet är en avvägning som designers alltid måste göra. I detta fall kommer en förenklad modelleringsprincip studeras där propellern representeras av en cylindrisk volym med samma diameter och proportioner som den faktiska propellern. Denna volym, kallad en aktuatordisk-volym implementeras med framdrivningskrafterna genom inmatning av lokala källtermer i modellen och överför på så vis rörelsemängd till fluiden. Arbetet har fokuserats på utveckling av denna simuleringsmodell och att utvärdera dess prestanda genom jämförelse mot en geometriskt mer komplex propellermodell.   Syftet med detta arbete är att undersöka resultat från en förenklad propellermodell med avseende på inducerat hastighetsfält för en propeller som verkar i ett homogent inflödesfält. Analys av den inducerade hastighetsprofilen är ett viktigt steg i designprocessen för propeller-roder-konfiguration och en beräkningseffektiv metod för att uppnå detta är mycket önskvärd.   Resultat från simuleringarna visar att modelleringsprincipen möjliggör enkel användning av olika propellertyper och förbättrar beräkningseffektiviteten med en tredjedel av tidsåtgången som krävs för den komplexa propellermodellen. Inducerade hastighetsprofiler visar även på relativt god överensstämmelse och modellen erbjuder användbara verktyg för att variera dess utseende. Fortsatt arbete bör övervägas för att optimera diskretiseringsmetod och på så vis även möjliggöra förbättring av lösningstiden, tillsammans med undersökning av icke-uniformt inflödesvillkor inspirerat av strömningen som skapas bakom en fartygskropp. / Propeller simulation by Computational Fluid Dynamics (CFD) is more and more used in an early design stage of marine propulsion. Rolls-Royce Hydrodynamic Research Centre has long experience with propeller design and analysis through both model testing and numerical simulations, and CFD is today used in a wide range of applications and purposes. Utilizing a time efficient and simple simulation approach is a valuable strategy, and time against accuracy is a trade off a designer need to do all the time. In this case the study will concern a modelling approach where the propeller is represented by a cylindrical volume with the same diameter and proportions as an actual propeller. This volume, called an actuator disc volume zone is implemented with the propulsive forces as local source terms into the model and thereby provides momentum into the fluid. Work will be concentrated on developing this simulation model and evaluate its performance by comparison with a more complex propeller geometry model. The purpose of this work is to investigate the result from a simplified propeller model in regard to the induced velocity field for a propeller operating in a homogeneous inflow field. Analysis of the induced velocity profile is an important step in the design process of propeller-rudder configuration and a computationally efficient method in doing this is highly desirable. Results from the simulations show that the modelling approach enables simple employment of different propeller types and improves computational efficiency with a third of required time amount compared to the complex propeller model. The induced velocity profiles also demonstrate a relatively accurate behaviour and the model provide useful tools in altering their appearance. Further work need to be considered in optimizing the discretization method and thereby possibly improve solution efficiency, together with examining of a non-uniform inflow velocity condition inspired by the wake created behind a ship hull.
6

Experimental Approach to the Feasibility of an Axially-Stacked Propeller System

Nichols, Schuyler R. January 2014 (has links)
No description available.
7

Development of a Cycloidal Propulsion Computer Model and Comparison with Experiment

McNabb, Michael Lynn 14 December 2001 (has links)
Simplified unsteady aerodynamic and inertial force models were developed for a cycloidal propeller system operating at small forward speeds. These models were used to support the development of a VTOL concept demonstrator vehicle. The nature of the blade motion showed that interactions between the blades could be neglected to first order. The downwash through the rotor could not be neglected because of the induced angle of attack caused by the downwash. The total force was compared with wind tunnel data produced by Wheatley in the 30's and a ground test system developed for this project. It was found that the estimates produced by the model agreed with the total force and power to within 10% for the Wheatley data. Agreement between the model and the current tests was within 5% for the total force and power. The inertial loads were used to design the blade structure, the support structure, and the blade motion system. It was found that the inertial loads were much larger than the aerodynamic loads. The aerodynamic effect of forward motion or wind moving toward the propeller was defined. It was modeled as a constant velocity induced flow through the propeller that induced an angle of attack of the blades. It was found that the cycloidal propeller was very susceptible to wind gusts, but that the resultant force from the wind gust could be easily damped out. The same forward motion model was used to simulate downwash. By modeling the downwash as a constant velocity flow through the propeller, the lift and thrust of the propeller was linked to the induced flow velocity. The effect of the induced flow velocity was then linked back to its effect on the lift and thrust produced by the propeller.
8

Using Single Propeller Performance Data to Predict Counter-Rotating Propeller Performance for a High Speed Autonomous Underwater Vehicle

Jacobson, Jessica 12 June 2007 (has links)
The use of counter-rotating propellers is often desirable for aerospace and ocean engineering applications. Counter-rotating propellers offer higher peak efficiencies, better off-design performance, and roll control capabilities. But counter-rotating propeller matching is a difficult and complex procedure. Although much research has been done on the design of optimal counter-rotating propeller sets, there has been less focus on predicting the performance of unmatched counter-rotating sets. In this study, it was desired to use off-the-shelf marine propellers to make a counter-rotating pair for a high speed autonomous underwater vehicle (AUV). Counter-rotating propellers were needed to provide roll control for the AUV. Pre-existing counter-rotating propeller design methods were not applicable because they all require inputs of complex propeller blade geometries. These geometries are rarely known for off-the-shelf propellers. This study proposes a new method for predicting the counter-rotating performance of unmatched propeller sets. It is suggested here that propeller performance curves can be used to predict counter-rotating thrust and torque performance. Propeller performance tests were run in the Virginia Tech Water Tunnel for a variety of small, off-the shelf propellers. The collected data was used to generate the propeller performance curves. The propellers were then paired up and tested as counter-rotating sets. A momentum theory based model was formulated that predicted counter-rotating performance using the propeller performance data. The counter-rotating data was used to determine the effectiveness of the method. A solution was found that successfully predicted the counter-rotating performance of all of the tested propeller sets using six interaction coefficients. The optimal values of these coefficients were used to write two counter-rotating performance prediction programs. The first program takes the forward and aft RPMs and the flow speed as inputs, and predicts the generated thrust and torque. The second program takes the flow speed and the desired thrust as inputs and calculates the forward and aft RPM values that will generate the desired thrust while producing zero torque. The second program was used to determine the optimal counter-rotating set for the HSAUV. / Master of Science
9

Investigation of Perforated Ducted Propellers to use with a UAV

Regmi, Krishna 01 May 2013 (has links)
Unmanned Aerial Vehicle (UAV) is any flying vehicle which is not controlled by actual human pilots sitting in the cockpit but is installed with proper avionics that can either fly autonomously or by using the commands from its base. Some rotorcraft UAVs use a ducted propeller for two main reasons- safety and to increase the thrust produced by the propellers. While ducted rotors can increase the thrust produced, it also adds weight to the UAV. It was therefore hypothesized that by removing part of the duct materials (i.e. adding perforations in the duct) would benefit from both decreased duct weight and increased thrust. However, it is not clear how much trade-off would be between these two factors. Hence, the objective of this study is to explore the relationship between the change of thrust and addition of different numbers or sizes of perforations. Cases with and without duct, and duct with perforations were simulated using a commercial computational fluid dynamic (CFD) software Ansys/Fluent. The physics of the rotating propeller was modeled by a simplified disc with a pressure jump across an infinitesimal volume. Three different RPM speeds of the propellers were simulated by varying the strength of the pressure jump. The results show that the thrust decreases as the duct is added. As perforations are added, the result shows that with more perforations (i.e. more open area on the duct wall), the thrust increases accordingly until the thrust reaches a maximum value without the duct. The result is in contrast to a published experimental data stating that installation of duct can increase thrust. It is speculated that the current duct with a flat wall has caused such difference from the experimental data. Further study is recommended to continue more detailed computational simulation using a duct with cambered airfoil configuration to reduce the aerodynamic losses.
10

Ligands for the coordination of lead

Cooper, Paul J. January 1993 (has links)
No description available.

Page generated in 0.0796 seconds