• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Delivery Strategy for Adipose-Derived Stem Cells in the Treatment of Myocardial Infarction

Lee, Justin J. 30 October 2012 (has links)
Cell-based therapies involving adipose-derived stem cells (ASCs) have shown promise in stimulating cardiovascular regeneration, including in the treatment of myocardial infarction (MI) and ischemic heart disease. However, previous studies involving the delivery of ASCs following MI have indicated that therapeutic efficacy has been limited by low survival and/or poor retention of the transplanted cells at the site of injury. To address these limitations, the goal of this thesis was to develop a more effective delivery strategy incorporating an injectable biomaterial combined with chemotactic growth factor delivery to enhance ASC retention within the gel. Working towards future in vivo analysis in a rat model, multilineage characterization studies confirmed that ASCs isolated from the epididymal fat pad of male Wistar rats could differentiate in vitro along the adipogenic, osteogenic, and chondrogenic lineages. Subsequently, the chemotactic response of the rat ASCs (rASCs) to varying concentrations of stromal derived factor-1 α (SDF-1α) and hepatocyte growth factor (HGF) was analyzed using a modified Boyden chamber assay. The results demonstrated that SDF-1α and HGF, at 20, 50, and 100 ng/mL elicited significant migratory responses under normoxic (21%) and hypoxic (5%) culture conditions. RT-PCR analysis was conducted to assess the expression of the two chemotactic growth factors and their associated receptors in the rASCs, and secreted SDF-1α protein expression was quantified by ELISA. Moving towards the development of the biomaterials-based delivery approach, the viability of rASCs encapsulated by photopolymerization in methacrylated glycol chitosan (MGC) hydrogels modified with various degrees of arginine-glycine-aspartic acid (RGD)-peptide modification was examined. More specifically, rASCs were encapsulated in MGC hydrogels with 0%, 4%, and 7% RGD modification and cultured for up to 14 days. Viability staining results indicated that rASC viability was enhanced in the 4% and 7% RGD-modified MGC hydrogels in comparison to the MGC hydrogels with no peptide modification. Pre-loading the gels with 50 ng/mL of SDF-1α had no significant effects on cell viability over 14 days. Overall, the results demonstrate that peptide modification to promote cell adhesion within the MGC hydrogels is key to improving cell viability and thereby improving the therapeutic potential of ASCs. / Thesis (Master, Chemical Engineering) -- Queen's University, 2012-10-24 23:54:37.126
2

Development of a Biomimetic Scaffold for Ligament Tissue Engineering

Hayami, James W.S. 22 June 2011 (has links)
The focus of this thesis was to design a scaffold for in vitro culture that would mimic the structure of the native ligament in order to influence primary ligament cells towards the production of ligament-specific tissue. A major part of this project was material selection and subsequent testing to determine if the chosen materials were suitable for the scaffold design. A 20:80 (CL:DLLA) poly(ε-caprolactone-co-D,L-lactide) copolymer (PCLDLLA) was synthesized and electrospun with sub-cellular fibre diameters. The fibres were manufactured into aligned arrays to mimic the collagen fibrils of the ligament. To enhance cell and protein adhesion properties, the PCLDLLA polymer surface was modified using a base catalyzed etching technique. A photocrosslinked methacrylated glycol chitosan (M-GC) hydrogel was used to deliver encapsulated ligament cells to the biomimetic scaffold and mimic the hydrated proteoglycan matrix portion of the ligament. The scaffolds were cultured in vitro for a 4 week period and characterized using immunohistochemistry to identify and localize ligament specific proteins produced within the scaffolds. Cell culture results indicated that the M-GC hydrogel was an effective method of delivering viable cells evenly throughout the biomimetic scaffold. Compared to the unmodified PCLDLLA surfaces, the base-etched electrospun PCLDLLA fibre surfaces increased cell adhesion and acted as new tissue growth guides in the biomimetic scaffold. The biomimetic scaffolds produced and accumulated ligament specific proteins: collagens type I and III. The biomimetic scaffold design was determined to be a viable alternative to the current designs of ligament tissue engineering scaffolds. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-06-22 10:46:12.291

Page generated in 0.0803 seconds