• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal cracking of asphaltene by addition of hydrogen donor solvent

Peng, Mingyang Unknown Date
No description available.
2

Effects of hydrogen donor additives on the coking properties of high-temperature coal extracts

Makgato, M.H. (Matlou Hector) 09 February 2009 (has links)
Refcoal is a carbon precursor obtained by alkali-mediated extraction of coal with aprotic solvents such as DMF. Refcoal can be converted into a graphitic material through appropriate heat treatment. Graphitisable materials require the development of an intermediate liquid crystalline mesophase. Thus formation of a mesophase during the carbonisation of Refcoal is essential for obtaining highly graphitisable anisotropic cokes suitable for nuclear graphite applications. Anisotropic carbons are even more important in other commercial and industrial application because of their distinctive properties. The formation of anisotropic carbon depends on the nature of the parent precursor, temperature and carbonisation conditions, especially the molecular mobility during the mesophase stage. High-temperature extraction of coal produces Refcoal that yield cokes with a low level of anisotropy. Good control of the mesophase stage during carbonisation may lead to the development of anisotropic cokes. Hydrogen donor additives increase the molecular mobility in the liquid phase by stabilising the free radicals formed by thermal decomposition of coal. Hydrogen donor additives also increase the temperature range over which fluidity occurs, thereby allowing the formation of large sized mosaic structures. Mittal pitches (CTP) and tetralin were examined for their effectiveness as hydrogen donor additives. Refcoal blends containing 10 to 50% by mass additive were prepared by mixing and carbonisation conducted at temperatures ranging form 400 to 1000 °C. Samples were analysed using thermogravimetric analysis (TGA), diffuse reflectance infrared Fourier transform (DRIFT), optical microscope techniques, scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that addition of at least 10% tetralin improves the optical texture of Refcoal cokes and also increases the carbon yield. In both tetralin and pitch addition, 20% additive gave coarse circular anisotropic cokes after carbonisation at 650°C. However the carbon yield was reduced for the Refcoal coke treated with Mittal pitch. In fact the yield roughly decreases with an increase in pitch content. Although the cokes from pitch treated Refcoals showed a low ratio of d/g (where d indicates the degree of disordering and g the degree of ordering), Raman and XRD results indicate little further improvement in crystallinity but SEM showed development of a smooth morphology with increasing pitch content. Previous literature results suggest that this indicates that the material must have passed through a mesophase stage. Surprisingly, the addition of tetralin yielded cokes with high ratio of d/g, but improved the carbon yield and optical anisotropy. Increasing tetralin content in the carbonising system increased the size of anisotropic textures but the SEM micrographs show rough morphology with compounds that appear to inhibit mesophase spheres coalescence. / Dissertation (MSc)--University of Pretoria, 2009. / Chemistry / unrestricted
3

Experimental Study of In Situ Combustion with Decalin and Metallic Catalyst

Mateshov, Dauren 2010 December 1900 (has links)
Using a hydrogen donor and a catalyst for upgrading and increasing oil recovery during in situ combustion is a known and proven technique. Based on research conducted on this process, it is clear that widespread practice in industry is the usage of tetralin as a hydrogen donor. The objective of the study is to find a cheaper hydrogen donor with better or the same upgrading performance. Decalin (C10H18) is used in this research as a hydrogen donor. The experiments have been carried out using field oil and water saturations, field porosity and crushed core for porous medium. Four in situ combustion runs were performed with Gulf of Mexico heavy oil, and three of them were successful. The first run was a control run without any additives to create a base for comparison. The next two runs were made with premixed decalin (5 percent by oil weight) and organometallic catalyst (750 ppm). The following conditions were kept constant during all experimental runs: air injection rate at 3.1 L/min and combustion tube outlet pressure at 300 psig. Analysis of the performance of decalin as a hydrogen donor in in-situ combustion included comparison of results with an experiment where tetralin was used. Data from experiments of Palmer (Palmer-Ikuku, 2009) was used for this purpose, where the same oil, catalyst and conditions were used. Results of experiments using decalin showed better quality of produced oil, higher recovery factor, faster combustion front movement and higher temperatures of oxidation. API gravity of oil in a run with decalin is higher by 4 points compared to a base run and increased 5 points compared to original oil. Oil production increased by 7 percent of OOIP in comparison with base run and was 2 percent higher than the experiment with tetralin. The time required for the combustion front to reach bottom flange decreased 1.6 times compared to the base run. The experiments showed that decalin and organometallic catalysts perform successfully in in situ combustion, and decalin is a worthy replacement for tetralin.

Page generated in 0.0471 seconds