Spelling suggestions: "subject:"aydrogen inhibition"" "subject:"bydrogen inhibition""
1 |
Efeito de derivados da hidrólise de biomassa de algas sobre a produção biológica de H2 por diferentes espécies de Clostridium sp / Effect of algal biomass hydrolysis derivatives on the biological production of H2 by different species of Clostridium spGiraldeli, Lucas Diniz 10 November 2017 (has links)
O H2 pode ser obtido por processos biológicos, como a fermentação, conduzidos à temperatura e pressão ambientes. Para tal são utilizadas matérias-primas renováveis, ricas em carboidratos, como as biomassas lignocelulósicas e de algas. Estas biomassas têm estrutura química complexa e requerem uma etapa de pré-tratamento e/ou hidrólise antes da sua utilização na fermentação. Processos de hidrólise podem liberar, tanto monossacarídeos, quanto substâncias potencialmente inibidoras de fermentação. Esse estudo avaliou o efeito de 3 potenciais inibidores de fermentação (5-hidroximetilfurfural -HMF, ácido levulínico AL e ácido fórmico AF), derivados da hidrólise de biomassas. Ensaios cinéticos de fermentação em batelada foram realizados com o microrganismo produtor de H2, Clostridium beijerinckii Br21, utilizando glicose como fonte de carbono e diferentes concentrações de cada inibidor. O efeito do HMF, do AL e do AF foram avaliados nas faixas de concentração de 0,5 a 2,5 g/L, de 1,0 a 4,0 g/L, e de 0,5 a 2,0 g/L, respectivamente. Retiraram-se amostras do gás produzido e do líquido para estimar as velocidades específicas de produção de H2, do crescimento celular e de consumo de glicose, nos ensaios com e sem a presença de inibidor (controle). Foi observada inibição de todos os parâmetros avaliados, comparados ao controle. Houve um aumento do tempo para início da produção e diminuição do rendimento de H2 com o aumento da concentração de todos os inibidores. Os resultados das fermentações permitiram estimar a concentração dos compostos que inibem 50% a produção de H2, o crescimento celular e o consumo do substrato (CI50). Os valores de CI50 obtidos para a produção de H2 pelo HMF, AL e AF foram 0,89, 2,50 e 1,15 g/L, respectivamente. Para o crescimento celular a CI50 do HMF, AL e AF foram 1,42, 2,08 e 1,46 g/L, respectivamente. Para o consumo de substrato a CI50 foi 3,23, 3,79 e 0,43 g/L, para o HMF, AL e AF, respectivamente. As concentrações de CI50 para a produção de H2 foram testados em 2 microrganismos distintos, o C. beijerinckii Br21 e o Clostridium acetobutylicum ATCC 824, para fins comparativos. Assim pode-se verificar a inibição na produção de H2 no C. beijerinckii Br21 de 49,3, 48,7 e 51,3%, enquanto que o C. acetobutylicum ATCC 824 apresentou inibição de 45,5, 61,3 e 59,6%, para o HMF, AL e AF, respectivamente. Foi estimada também a concentração de compostos que inibem 25% a produção de H2, a CI25, a fim de realizar misturas com os inibidores e testá-las em ambos os microrganismos. Os valores obtidos de CI25 para HMF, AL e AF foram 0,66, 2,15 e 0,89 g/L, respectivamente. A partir desses valores foram feitas 4 misturas distintas: HMF+AL, HMF+AF, AL+AF e HMF+AL+AF. A inibição da produção de H2 a partir dessas misturas em C. beijerinckii Br21foram de 58,9, 58,4, 49 e 85,9%, enquanto que para o C. acetobutylicum ATCC 824 obteve-se os valores de 67,6, 66,6, 55,5 e 88,8%, para HMF+AL, HMF+AF, AL+AF e HMF+AL+AF, respectivamente. Portanto, pode-se notar que o C. acetobutylicum ATCC 824 mostrou ser mais sensível aos efeitos causados pelos inibidores, sendo que o HMF parece atuar mais sobre a produção de H2, enquanto que os ácidos têm efeito mais global no metabolismo da bactéria. Esses estudos mostraram os limites destes compostos, quando se deseja utilizar hidrolisados de biomassas como matéria-prima para a produção fermentativa do H2.pelas espécies de Clostridium estudadas. / H2 can be obtained by biological processes, such as fermentation, conducted at ambient temperature and pressure. Renewable raw materials like lignocellulosic and algae biomass, which are rich in carbohydrates, can be used for this purpose. These types of biomass have complex chemical structures and require a pretreatment and/or hydrolysis step before they are used in fermentation. Hydrolysis may release not only monosaccharides but also potentially fermentation-inhibiting substances. This study evaluates how three potential fermentation inhibitors (5-hydroxymethylfurfural (HMF), levulinic acid-(LA), and formic acid (FA) derived from algal biomass hydrolysis affect H2 production. Kinetic batch fermentation assays were performed by using the H2-producing microorganism Clostridium beijerinckii Br21, glucose as carbon source, and different concentrations of each inhibitor. The effect of HMF, LA, and FA on H2 production was evaluated for inhibitor concentrations ranging from 0.5 to 2.5 g/L, 1.0 to 4.0 g/L, and 0.5 to 2.0 g/L, respectively. Samples of the produced gas and liquid were taken to estimate the specific rates of H2 production, cell growth, and glucose consumption in the assays conducted in the presence or in the absence (control) of an inhibitor. Increasing inhibitor concentration delayed the onset of H2 production and diminished the H2 yield. The fermentation results allowed us to estimate the inhibitor concentration that inhibited 50% of the H2 production, cell growth, and substrate consumption rates, designated IC50. Concerning the H2 production rate, IC50 was 0.89, 2.50, and 1.15 g/L for HMF, LA, and FA, respectively. As for the cell growth rate, IC50 was 1.42, 2.08, and 1.46 g/L for HMF, LA, and FA, respectively. Regarding the substrate consumption rate, IC50 was 3.23, 3.79, and 0.43 g/L for HMF, LA, and FA, respectively. IC50 was also tested in the presence of C. beijerinckii Br21 or Clostridium acetobutylicum ATCC 824 and one of the inhibitors. The H2 production rate decreased by 49.3, 48.7, and 51.3% in the presence of C. beijerinckii Br21 and of HMF, AL, or AF, respectively. In the presence of C. acetobutylicum ATCC 824 and of HMF, AL, or AF, the H2 production rate reduced by 45.5, 61.3, and 59.6%, respectively. The inhibitor concentration that inhibited 25% of H2 production, IC25, was also determined so that mixtures of the inhibitors could be prepared and tested in the presence of the microorganisms. HMF, LA, and FA afforded IC25 of 0.66, 2.15, and 0.89 g/L, respectively. On the basis of these values, four different mixtures were prepared: HMF+LA, HMF+FA, LA+FA, and HMF+LA+FA. In the presence of C. beijerinckii Br21, HMF+LA, HMF+FA, LA+FA, and HMF+LA+FA inhibited H2 production by 58.9, 58.4, 49, and 85.9%, respectively, whereas in the presence of C. acetobutylicum ATCC 824, inhibitions were 67.6, 66.6, 55.5, and 88.8% respectively. Therefore, C. acetobutylicum ATCC 824 was more sensitive to the effects caused by inhibitors. HMF seemed to affect the H2 production rate more, whereas acids appeared to act more globally on bacterial metabolism. These results reveal the concentration limits of the tested inhibitors when biomass hydrolysates are employed as raw material for fermentative H2 production.
|
2 |
Efeito de derivados da hidrólise de biomassa de algas sobre a produção biológica de H2 por diferentes espécies de Clostridium sp / Effect of algal biomass hydrolysis derivatives on the biological production of H2 by different species of Clostridium spLucas Diniz Giraldeli 10 November 2017 (has links)
O H2 pode ser obtido por processos biológicos, como a fermentação, conduzidos à temperatura e pressão ambientes. Para tal são utilizadas matérias-primas renováveis, ricas em carboidratos, como as biomassas lignocelulósicas e de algas. Estas biomassas têm estrutura química complexa e requerem uma etapa de pré-tratamento e/ou hidrólise antes da sua utilização na fermentação. Processos de hidrólise podem liberar, tanto monossacarídeos, quanto substâncias potencialmente inibidoras de fermentação. Esse estudo avaliou o efeito de 3 potenciais inibidores de fermentação (5-hidroximetilfurfural -HMF, ácido levulínico AL e ácido fórmico AF), derivados da hidrólise de biomassas. Ensaios cinéticos de fermentação em batelada foram realizados com o microrganismo produtor de H2, Clostridium beijerinckii Br21, utilizando glicose como fonte de carbono e diferentes concentrações de cada inibidor. O efeito do HMF, do AL e do AF foram avaliados nas faixas de concentração de 0,5 a 2,5 g/L, de 1,0 a 4,0 g/L, e de 0,5 a 2,0 g/L, respectivamente. Retiraram-se amostras do gás produzido e do líquido para estimar as velocidades específicas de produção de H2, do crescimento celular e de consumo de glicose, nos ensaios com e sem a presença de inibidor (controle). Foi observada inibição de todos os parâmetros avaliados, comparados ao controle. Houve um aumento do tempo para início da produção e diminuição do rendimento de H2 com o aumento da concentração de todos os inibidores. Os resultados das fermentações permitiram estimar a concentração dos compostos que inibem 50% a produção de H2, o crescimento celular e o consumo do substrato (CI50). Os valores de CI50 obtidos para a produção de H2 pelo HMF, AL e AF foram 0,89, 2,50 e 1,15 g/L, respectivamente. Para o crescimento celular a CI50 do HMF, AL e AF foram 1,42, 2,08 e 1,46 g/L, respectivamente. Para o consumo de substrato a CI50 foi 3,23, 3,79 e 0,43 g/L, para o HMF, AL e AF, respectivamente. As concentrações de CI50 para a produção de H2 foram testados em 2 microrganismos distintos, o C. beijerinckii Br21 e o Clostridium acetobutylicum ATCC 824, para fins comparativos. Assim pode-se verificar a inibição na produção de H2 no C. beijerinckii Br21 de 49,3, 48,7 e 51,3%, enquanto que o C. acetobutylicum ATCC 824 apresentou inibição de 45,5, 61,3 e 59,6%, para o HMF, AL e AF, respectivamente. Foi estimada também a concentração de compostos que inibem 25% a produção de H2, a CI25, a fim de realizar misturas com os inibidores e testá-las em ambos os microrganismos. Os valores obtidos de CI25 para HMF, AL e AF foram 0,66, 2,15 e 0,89 g/L, respectivamente. A partir desses valores foram feitas 4 misturas distintas: HMF+AL, HMF+AF, AL+AF e HMF+AL+AF. A inibição da produção de H2 a partir dessas misturas em C. beijerinckii Br21foram de 58,9, 58,4, 49 e 85,9%, enquanto que para o C. acetobutylicum ATCC 824 obteve-se os valores de 67,6, 66,6, 55,5 e 88,8%, para HMF+AL, HMF+AF, AL+AF e HMF+AL+AF, respectivamente. Portanto, pode-se notar que o C. acetobutylicum ATCC 824 mostrou ser mais sensível aos efeitos causados pelos inibidores, sendo que o HMF parece atuar mais sobre a produção de H2, enquanto que os ácidos têm efeito mais global no metabolismo da bactéria. Esses estudos mostraram os limites destes compostos, quando se deseja utilizar hidrolisados de biomassas como matéria-prima para a produção fermentativa do H2.pelas espécies de Clostridium estudadas. / H2 can be obtained by biological processes, such as fermentation, conducted at ambient temperature and pressure. Renewable raw materials like lignocellulosic and algae biomass, which are rich in carbohydrates, can be used for this purpose. These types of biomass have complex chemical structures and require a pretreatment and/or hydrolysis step before they are used in fermentation. Hydrolysis may release not only monosaccharides but also potentially fermentation-inhibiting substances. This study evaluates how three potential fermentation inhibitors (5-hydroxymethylfurfural (HMF), levulinic acid-(LA), and formic acid (FA) derived from algal biomass hydrolysis affect H2 production. Kinetic batch fermentation assays were performed by using the H2-producing microorganism Clostridium beijerinckii Br21, glucose as carbon source, and different concentrations of each inhibitor. The effect of HMF, LA, and FA on H2 production was evaluated for inhibitor concentrations ranging from 0.5 to 2.5 g/L, 1.0 to 4.0 g/L, and 0.5 to 2.0 g/L, respectively. Samples of the produced gas and liquid were taken to estimate the specific rates of H2 production, cell growth, and glucose consumption in the assays conducted in the presence or in the absence (control) of an inhibitor. Increasing inhibitor concentration delayed the onset of H2 production and diminished the H2 yield. The fermentation results allowed us to estimate the inhibitor concentration that inhibited 50% of the H2 production, cell growth, and substrate consumption rates, designated IC50. Concerning the H2 production rate, IC50 was 0.89, 2.50, and 1.15 g/L for HMF, LA, and FA, respectively. As for the cell growth rate, IC50 was 1.42, 2.08, and 1.46 g/L for HMF, LA, and FA, respectively. Regarding the substrate consumption rate, IC50 was 3.23, 3.79, and 0.43 g/L for HMF, LA, and FA, respectively. IC50 was also tested in the presence of C. beijerinckii Br21 or Clostridium acetobutylicum ATCC 824 and one of the inhibitors. The H2 production rate decreased by 49.3, 48.7, and 51.3% in the presence of C. beijerinckii Br21 and of HMF, AL, or AF, respectively. In the presence of C. acetobutylicum ATCC 824 and of HMF, AL, or AF, the H2 production rate reduced by 45.5, 61.3, and 59.6%, respectively. The inhibitor concentration that inhibited 25% of H2 production, IC25, was also determined so that mixtures of the inhibitors could be prepared and tested in the presence of the microorganisms. HMF, LA, and FA afforded IC25 of 0.66, 2.15, and 0.89 g/L, respectively. On the basis of these values, four different mixtures were prepared: HMF+LA, HMF+FA, LA+FA, and HMF+LA+FA. In the presence of C. beijerinckii Br21, HMF+LA, HMF+FA, LA+FA, and HMF+LA+FA inhibited H2 production by 58.9, 58.4, 49, and 85.9%, respectively, whereas in the presence of C. acetobutylicum ATCC 824, inhibitions were 67.6, 66.6, 55.5, and 88.8% respectively. Therefore, C. acetobutylicum ATCC 824 was more sensitive to the effects caused by inhibitors. HMF seemed to affect the H2 production rate more, whereas acids appeared to act more globally on bacterial metabolism. These results reveal the concentration limits of the tested inhibitors when biomass hydrolysates are employed as raw material for fermentative H2 production.
|
3 |
Rôle des gaz dissous dans la digestion anaérobie par voie sèche de déchets ligno-cellulosiques / Impact of dissolved gas on dry anaerobic digestion of lignocellulosic residuesCazier, Elisabeth, A. 26 November 2015 (has links)
La digestion anaérobie par voie sèche est un procédé de valorisation des déchets organiques qui est défini par une teneur en matière sèche supérieure à 15%. Ce procédé est particulièrement adapté aux déchets ligno-cellulosiques puisqu’il ne nécessite qu’un ajout limité en eau. Cependant, la digestion anaérobie est inhibée pour des teneurs en matière sèche élevées, due à une diminution des transferts gaz-liquide au sein du milieu qui provoquerait des accumulations locales de produits inhibiteurs comme les gaz dissous. L’objectif de cette thèse est donc de comprendre le rôle des gaz dissous dans la digestion anaérobie par voie sèche à l’échelle microscopique et mésoscopique. Les principaux résultats montrent que l’hydrogène inhibe spécifiquement l’hydrolyse de la matière ligno-cellulosique à l’échelle microscopique. Cette inhibition est réversible en ajoutant du dioxyde de carbone, par consommation de l’hydrogène, avec cependant des effets rémanents inhibiteurs visibles sur la méthanogenèse et la dégradation de l’acétate. A l’échelle mésoscopique, la diminution des transferts de matière inhiberait l’hydrolyse, par l’accumulation locale d’hydrogène. De plus, un gradient de concentration d’hydrogène se met en place et serait responsable du gradient de concentration des acides gras volatils au sein du milieu. De plus, l’ajout de dioxyde de carbone à l’échelle mésoscopique avec un transfert gaz-liquide limitant augmente la concentration en acides gras volatils et baisse le pH du milieu, ce qui indique le rôle important du dioxyde de carbone dans la diminution des performances de la digestion anaérobie pour de fortes teneurs en matières sèches. / Dry anaerobic digestion is a method of organic waste treatment and conversion to bioenergy, defined by a total solid content over 15%. This process is particularly suitable for lignocellulosic residues since the quantity of water to be added for the process is rather limited. However, dry anaerobic digestion processes is inhibited for a high total solid content, due to a decrease of the gas-liquid transfer within the medium, which may cause local accumulations of inhibitory byproducts, such as dissolved gases. This thesis aims to better understand the role of dissolved gas in dry anaerobic digestion at microscopic and mesoscopic scale. It was shown that hydrogen can inhibit specifically the hydrolysis step of lignocellulosic residues at microscopic level. This inhibition was reversible after addition of carbon dioxide, with remaining inhibitory effect on the acetate degradation and methanogenesis. At mesoscopic scale, the decrease of the mass transfer inhibits the hydrolysis, by dissolved hydrogen accumulation. Moreover, a local hydrogen concentration gradient was present and seems responsible for a concentration gradient of volatile fatty acids in the medium. Moreover, adding carbon dioxide at mesoscopic scale, with a limited gas-liquid transfer, increased the volatile fatty acids concentration and decreased the pH, which showed the important role of carbon dioxide in the inhibition of anaerobic digestion under high dry matter content.
|
Page generated in 0.0822 seconds