• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biohydrogen production by facultative and obligate anaerobic bacterial consortia in fluidized bioreactor

Ngoma, Lubanza 16 January 2012 (has links)
Ph.D., Faculty of Science, University of the Wiwatersrand, 2011 / Biological production of hydrogen gas has received increasing interest from the international community during the last decade. Most studies on biological fermentative hydrogen production from carbohydrates using mixed cultures have been conducted in conventional continuous stirred tank reactors (CSTR) under mesophilic conditions. Investigations on hydrogen production in reactor systems with attached or self-immobilized microbial growth have also appeared recently in the literature. These investigations on attached or self-immobilised bacteria involve hydrogen production in the mesophilic and thermophilic temperature range. The present study investigated the design and operational features of anaerobic fluidized granular bed bioreactor (AFGB) system which would facilitate the simultaneous achievement of high productivities (HPs) and high hydrogen yields (HYs).Where high HPs is greater than 120 mmol H2 /(L.h) and HYs greater than 4 mol H2/mol glucose. Theoretical maximum yield for an exponentially growing non-granulated bacterial monoculture will always be less than the thermodynamic maximum of 4 mol H2 /mol glucose: C6H12O6 +4H2O → 2CH3COO- + 4H2 + 4H+ + 2HCO3. The design features included reducing the total non-working or dead volume of bioreactor system. The operational improvements included application of thermophilic temperatures and high rates of de-gassed effluent recycling through the fluidized granular bed. An example of an optimal ratio of effluent recycle rate (R) to bioreactor working volume (V) was (3.0 L/min)/(3.2 L/min) = 0.94 minutes. Under conditions where temperatures were maximised and V/R were minimized the HPs increased to 21.58 L H2 /h. Also under these conditions the HYs increased above 3.0 mol H2/mol glucose. Specific hydrogen productivity for the fluidized granular bed increased from 0.25 L H2 / (g BM.h) or 8.83 mmol H2 / (g BM.h) at 45 oC to 0.525 L H2 / (g BM.h) or 18.03 mmol H2 / ( g BM.h) at 70 oC. A 3.64 fold increase in hydrogen yield occurred with an increase in temperature from 45 oC to 70 oC. XX When expressed in terms of glucose, this represents an increase from 1.34 mol H2 /mol glucose to 4.65 mol H2 /mol glucose. Finally, an evaluation of the net energy production by the AFGB system revealed a positive energy balance, making thermophilic biohydrogen production energetically viable from a commercial perspective.
2

Production in situ d'hydrogène pur par reformage d'éthanol dans un réacteur catalytique à membrane / On-site pure hydrogen production in a catalytic membrane reactor by ethanol steam reforming

Hedayati, Ali 26 September 2016 (has links)
Dans ce travail, la production in-situ d'hydrogène (pur) à partir de vapo-reformage d’éthanol (ESR) dans un réacteur catalytique à membrane (MR) a été étudiée. Un mélange d'éthanol pur et distillé a été utilisé comme combustible. Le réacteur est constitué d’un catalyseur Pd-Rh/CeO2 et d’une membrane Pd-Ag: l’ensemble est désigné par « reformeur ». Les expériences sur ce reformeur ont été effectuées dans diverses conditions de fonctionnement: température, pression, débit de combustible et rapport molaire de l'eau-éthanol (rapportSC). La performance du réacteur catalytique à membrane (CMR) a été étudiée en termes de facteur de production d'hydrogène théorique, d’efficacité de production de l’hydrogène et de la part d’hydrogène récupérée. L’évaluation thermodynamique du reformeur a été présentée. L'analyse exergétique a été réalisée sur la base des résultats expérimentaux visant non seulement à comprendre la performance thermodynamique du reformeur, mais aussi d'introduire l'application de l'analyse exergétique dans les études CMRs. L'analyse exergétique a fourni des informations importantes sur l'effet des conditions d'exploitation et les pertes thermodynamiques, et a donné lieu à la compréhension des meilleures conditions de fonctionnement. Outre les évaluations expérimentales et thermodynamiques du reformeur, la simulation de la dynamique de la production d'hydrogène (perméation) a été effectuée comme la dernière étape pour étudier l'applicabilité d'un tel système dans le cadre d'une utilisation finale réelle, qui peut être l’alimentation d’une pile à combustible. La simulation présentée dans ce travail est semblable aux ajustements de débit d'hydrogène nécessaires pour régler la charge électrique d'une pile à combustible répondant à des besoins variables. / In this work, in-situ production of fuel cell grade hydrogen (pure hydrogen) via catalytic ethanol steam reforming (ESR) in a membrane reactor (MR) was investigated. A mixture of pure ethanol and distilled was used as the fuel. ESR experiments were carried out over a Pd-Rh/CeO2 catalyst in a Pd-Ag membrane reactor – named as the fuel reformer – at variety of operating conditions regarding the operating temperature, pressure, fuel flow rate, and the molar ratio of water-ethanol (S/C ratio). The performance of the catalytic membrane reactor (CMR) was studied in terms of pure hydrogen production, hydrogen yield, andhydrogen recovery.Thermodynamic evaluation of the CMR was presented as a supplement to the comprehensive investigation of the overall performance of the mentioned pure hydrogen generating system. Exergy analysis was performed based on the experimental results aiming not only to understand the thermodynamic performance of the fuel reformer, but also to introduce the application of the exergy analysis in CMRs studies. Exergy analysis provided important information on the effect of operating conditions and thermodynamic losses, resulting in understanding of the best operating conditions.In addition to the experimental and thermodynamic evaluation of the reforming system, the simulation of the dynamics of hydrogen production (permeation) was performed as the last step to study the applicability of such a system in connection with a real end user, which can be a fuel cell. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, if fed on line by the studied pure hydrogen generating system.

Page generated in 0.3381 seconds