• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remote Sensing of 21st Century Water Stress for Hazard Monitoring in California

Carlson, Grace Anne 02 February 2023 (has links)
California has experienced an unusually dry past two decades punctuated by three intense multi-year droughts from 2007-2010, 2012-2015, and 2020-2022. A portion of the water lost during these two decades is due to intense groundwater overdraft of the Central Valley Aquifer. This groundwater overdraft has led to poroelastic compaction of the aquifer system and subsidence of the land surface. Water mass loss also causes elastic deformation of the solid Earth, an opposite and smaller amplitude response than the poroelastic deformation of aquifer systems. These mass changes can disturb the regional stress field, which may influence earthquake activity. Both the elastic and poroelastic deformation responses can be observed using satellite-based geodetic tools including Global Navigation Satellite System (GNSS) station displacements and Interferometric Synthetic Aperture Radar (InSAR). In this dissertation, I model aquifer-system compaction at depth using InSAR-based vertical land motion during the 2007-2010 drought and evaluate hazards related to Earth fissures, tensional cracks that form at the edges of subsidence zones. Next, I forward-calculate the predicted elastic deformation response to groundwater mass loss over the same period and calculate crustal stress change to evaluate what, if any, impact this has on seismicity in California. In addition to modeling deformation caused by water storage change, I also introduce a new method to jointly invert elastic vertical displacements at GNSS stations with water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) to solve for water storage changes from 2003-2016 over California. Finally, I expand on this joint inversion framework to include poroelastic deformation measured using InSAR over the Central Valley aquifer-system to solve for a change in water storage and groundwater storage over water years 2020-2021, the most recent drought period in California. / Doctor of Philosophy / Changes in the hydrologic system can have wide-reaching societal, geopolitical, economic, ecological, and agricultural impacts. Proper water management, particularly in places that have water scarcity concerns due to overuse, water pollution, or recurrent drought conditions, is essential to ensure this resource is available to future generations. Current projections of climate change scenarios point to more intense and frequent extreme hydroclimate events. With accelerating population growth in many urban centers across the world, measuring water storage changes has never been more important to ensure resiliency of our cities, energy sector, and agricultural systems. Furthermore, water storage changes deform the Earth, which may create or alter geophysical hazards such as subsidence, the development of Earth fissures, and seismicity. Today, a multitude of space-based geodetic tools allow us to monitor changes in the Earth system, including changes in terrestrial water content and associated deformation, with higher spatial and temporal resolution than ever before. These datasets have provided an unprecedented understanding of hydroclimatic hazards and have resolved constraints arising from sparse and infrequent in-situ measurements. Here, I use space-based geodetic tools and geophysical models to measure water storage fluctuations, deformation, and evaluate associated hazards in California, a region that has experienced an unprecedented nearly continuous two-decades long drought. In general, I find that 21st century droughts have caused significant water storage loss, especially groundwater storage loss, in California, which has exacerbated some geophysical hazards including land subsidence and Earth fissure hazards.
2

Observing Drought-Induced Crustal Loading Deformation Around Lake Mead Region via GNSS and InSAR: A Comparison With Elastic Loading Models

Zehsaz, Sonia 22 September 2023 (has links)
Lake Mead, the largest reservoir in the United States along the Colorado River on the border between the states of Nevada and Arizona, is one of the nation's most important sources of freshwater. As reported by the U.S. drought monitor (USDM), the entire region has been experiencing recurring severe to extreme droughts since the early 2000s, which have further intensified during the past two years. The drought-driven water deficit caused Lake Mead's water volume to decrease to approximately one-third of its capacity, creating a water crisis and negatively affecting soil and groundwater storage across the region. Water deficits have further reduced the mass of water loading on the Earth's crust, causing it to elastically deform. I observe this process from the ground by recording the vertical land motion occurring at Global Navigation Satellite System (GNSS) stations, or from space via Interferometric Synthetic Aperture Radar (InSAR) technology. In this study, I analyze vertical deformation observations from GNSS sites and multi-temporal InSAR analysis of Sentinel-1A/B to investigate the contribution of water mass changes in lake, soil, and groundwater to the deformation signal. To achieve this, I remove the effects of glacial isostatic adjustment and non-tidal mass loads from GNSS/InSAR observations. Our findings indicate that recent drought periods led to a notable uplift near Lake Mead, averaging 7.3 mm/year from 2012 to 2015 and an even larger rate of 8.6 mm/year from 2020 to 2023. Further, I provide an estimate of the expected vertical crustal deformation in response to well-known changes in lake and soil moisture storage. For that, I quantify hydrological loads through two different loading models. These include the application of Green's functions for an elastic, layered, self-gravitating, spherical Earth, and the Love load numbers from the Preliminary Reference Earth Models (PREMs), as well as elastic linearly homogeneous half-space Earth models. I further test various load models against the GNSS observations. Our research further investigates the impact of local crustal properties and evaluates the output of several elastic loading models using crustal properties and different model types under non-drought and drought conditions. For future studies, I suggest a comprehensive analysis of the deformation field InSAR data. Also, rigorous monitoring of groundwater levels is essential to accurately predict changes in water masses based on deformation. In addition, for each data set, I suggest implementing an uncertainty analysis to assess the predictability of groundwater level changes based on vertical loading deformation observed by INSAR/GNSS data around the region. Obtaining such estimates will provide valuable insight into the dynamic interactions of the local aquifers with Lake Mead. / Master of Science / The drought has led to a decline of approximately 40 meters in Lake Mead since 1999. During the process of water mass loss from a lake, the crust lifts and extends from the center. However, the water mass loss seen on the lake is not sufficient to explain the movement seen at nearby GPS sites. Hence, the uplift loading of water loss in the form of other hydrological components surrounding Lake Mead needs to be estimated. Here, I analyze several models that best fit the geodetic displacements and try to fill in the gap in deformation observations.

Page generated in 0.0462 seconds